The solution of acceleration in orthogonal curvilinear coordinate system through resultant motion;
正交曲线坐标系中加速度的合成运动求法
The equations of wave propagation in piezoelectric cylindrical bent rods were established in an orthogonal curvilinear coordinate system (r,s).
通过在正交曲线坐标系中建立弹性波在压电圆柱曲杆中传播的控制方程,结合给定的侧面边界条件,求得波在压电圆柱曲杆中传播的前三阶频散关系和位移与电势在横截面上的分布情况。
The Laplace equation is applied to get two-dimensional orthonormal curvilinear grid inside the computational domain,and the subsection Lagrange interpolation boundary slide method of boundary orthogonalized of orthonormal curvilinear grid is put forward and used on boundaries of computational domain in the paper.
提出了一种边界正交曲线网格的生成方法。
Simulation of 2-D cooling water in non-orthogonal curvilinear coordinate;
非正交曲线坐标系平面二维电厂温排水模拟
For analyzing the influence of Xin andu bridge on flood control,the paper builds a 2-D non-orthogonal curvilinear coordinate flow mathematical model which applied to the Lunhe River.
沦河上修建桥梁必然会对河道水位和流态产生影响,为了分析辛安渡大桥对沦河的防洪影响情况,建立了非正交曲线坐标下平面二维水流数学模型,并应用该模型对沦河修建辛安渡大桥前后的水流情况进行了模拟。
Through applying a numerical model of plane river flow in non-orthogonal curvilinear coordinate in the simulation of 2-D flow near the groyne,the shortcomings of orthogonal curvilinear coordinate in simulation of local places with irregular boundaries are successfully avoided.
将非正交曲线坐标系下的平面二维河道水流数学模型应用于丁坝绕流计算,克服了正交网格在对不规则边界进行局部模拟时存在的一些缺陷。
3-D turbulent model of meandering river in non-orthogonal curvilinear coordinates;
非正交曲线坐标下三维弯曲河流湍流数学模型
The 3-D RNG k-ε turbulence hydrodynamic model in non-orthogonal curvilinear coordinates is established in this paper.
本文采用非正交曲线坐标下的三维RNG k-ε双方程湍流数学模型,该模型在水平方向采用非正交曲线坐标,在垂直方向采用等分网格的全坐标变换,采用由二维深度平均方程演化而来的2-D泊松方程计算三维自由水面,应用SIMPLEC程式求解方程。
Numerical solution of 2-D tidal flow of the estuary in orthogonal curvilinear coordinates;
正交曲线坐标下河口二维潮流过程计算
By introducing reasonable fundamental assumptions and the Green strain in orthogonal curvilinear coordinates,geometric equations expressed by the Green strain tensor for solving thin shells with large deformation are derived in this paper.
将正交曲线坐标下的格林应变张量引入到薄壳大变形分析,通过建立恰当的基本假设,直接导出了用格林应变张量表示的壳体变形几何方程,将该方程代入到本构方程,由能量原理得到了小应变非线性变形平衡方程、内力方程和边界条件,在此基础上提出了大应变变形的简化分析方法。
By defining “generalized velocities” and “generalized accelerations”, velocities and accelerations in orthogonal curvilinear coordinates are obtained.
引入“广义速度”和“广义加速度”的概念,把正交曲线坐标系中的速度和加速度简化为对广义坐标及其微商的偏导。
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号