The fusion algorithm of multi-sensor measurement noise update estimate on out-of-sequence;
无序量测下的多传感器观测噪声融合估计
It is well known that the successful applications of the Kalman filter are dependent on whether the prior knowledge of the statistical characteristics of the measurement noise is known.
众所周知,卡尔曼滤波的成功应用需要事先准确知道观测噪声的统计特性。
The ionospheric delay can be weakened by multi-frequency observations,but pseudorange errors such as multipath errors and observation noises are magnified to different degrees due to using multi-frequency methods.
多频测距系统可以借助多频观测数据削弱电离层延迟的影响,但多频改正算法在改正电离层延迟项的同时会不同程度地放大多路径误差、观测噪声等伪距误差的影响。
The local geoid or gravity anomaly as an example is refined by the fusion of the simulated geoid height and gravity anomaly data,and the effects of observation noise level and non-stationary noise to the data fusion results are analyzed.
以融合大地水准面高和重力异常数据精化局部大地水准面或重力异常为例,利用模拟数据分析了不同大小的观测噪声和非稳态误差对数据融合结果的影响。
First analyzes the influence of observational noises about temporal correlation for Kalman filter,and gives a recursive formula of Kalman filtering according to linear unbiased minimum variance estimator criterion and a solution of data storage at the same time.
针对一般时间相关观测噪声进行研究,分析它们对Kalman结果的影响,然后根据状态估计为线性无偏最小方差估计的准则,给出测量噪声时间相关时的Kalman递推公式,同时也考虑相关数据的存储问题,最后通过数字模拟验证算法的有效性。
This paper analyses the influence of observational noises about temporal correlation for Kalman Filter firstly.
本文针对一般时间相关观测噪声进行研究,分析了它们对卡尔曼滤波结果的影响,然后根据状态估计为线性无偏最小方差估计的准则,给出了测量噪声时间相关时的卡尔曼滤波递推公式,同时也考虑了相关数据的存储问题,最后通过实例计算验证了算法的有效性。
The research analysed the influence of observational noises about temporal correlation,and gives recursive formula of Kalman Filtering.
在动态定位数据处理中,动态定位的精度和可靠性除受观测偶然误差和系统误差的影响外,还受时间相关的观测噪声的影响。
Study of Measurement Noise and State Fusion Estimation Algorithms for Multi-Channel System with Multiplicative Noises;
多通道带乘性噪声系统的观测噪声估计及状态融合估计算法研究
Optimal Estimation of Measurement Noise for Singular Systems with Multiplicative Noise
带乘性噪声广义系统的观测噪声最优估计算法
H_2 white noise estimation for linear continuous-time systems with delayed measurements
观测时滞连续系统的白噪声H_2估计
Optimal white noise estimatorsfor linear systems with delayed measurements
有观测时滞线性系统的白噪声最优估计
The Algorithm on Processor Noise Estimate with Colored Measurement Noise
有色测量噪声下的输入白噪声估计算法
Simplification of finite memorial online estimation for measurement noise
量测噪声有限记忆在线估计简化算法
An Active Edge Detection Method Based on Noise Estimation of Differential Image
基于微分图象噪声估计的主动型边界检测方法
Method of noise suppression based on robust regressive estimation for dim moving small target detection
基于鲁棒估计的微弱目标检测噪声抑制技术
Research on Detection and Estimation of Signals Interfered by Heavy Noises;
高噪声背景下的信号检测和估计方法研究
Noise Estimation Algorithm Based on Speech Frame Detection and Subband Spectral Tracking
基于语音帧检测和子带谱跟踪的噪声估计算法
Research on Performances of GI-RAIM Based on the Real-time Measurement Noise Estimation Algorithm
基于量测噪声实时估计算法的GI-RAIM性能研究
The algorithm on update state estimate of OOSM with correlated noise
噪声相关下的无序量测状态更新估计算法
Acoustics - Determination of occupational noise exposure and estimation of noise-induced hearing impairment???
声学--职业性噪声暴露测定和噪声听力损伤估算
The Performance Analysis of Discrete-Time Detection and Estimation in Colour Gaussian Noise
在有色高斯噪声中的离散时间检测与估计的性能分析
Interacting Multiple Models Algorithm with Wavelet-Based Unknown Measurement Noise Estimation
基于小波估计量测噪声方差的交互多模型跟踪算法
Multi-sensor state estimation fusion with correlated measurement noise
量测噪声相关条件情况下的多传感器状态融合估计
Far-end loop noise– using the estimated crosstalker profile, an estimate of the loop noise present at the far end can be made.
远端环路噪声-用估计的串扰属性,就能估计远端环路的噪声。
Observer Design for Descriptor Systems with Unknown Input and Measurement Noise;
含有未知输入与量测噪声的广义系统观测器设计
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号