The principle of least action with variables was used to solve the forced vibration of the rectangular plate with three clamped and the other free under concentrated load,and the corresponding stable solution was obtained.
应用混合变量最小作用(量)原理求解了三边固定一边自由矩形板在任意集中谐载作用下的受迫振动 问题,建立了求解这类问题受迫振动稳态解的新方法。
In this paper, with the principle of least action with variables to solve the problems of forced vibration of the rectangular plate with three clamped and the other free with uniform load with the action of uniform load, and the stable solution can be worked out.
在本文中,应用混合变量最小作用(量)原理求解了三边固定一边自由弯曲矩形板在均匀谐载作用下的受迫振动问题,得到其受迫振动的稳态解。
The reflection coefficient and refraction coefficient are also given; the analysis shows the versatility of the principle of least action,Snell s law and Fresnell s law in the research on the left-handed material,and the negative refraction effect is explained.
研究了电磁波在左右手介质界面折射与反射的特性,给出了折射系数和反射系数,从另外一个方面探讨了最小作用(量)原理在左手材料中的适用性;从电动力学和最小作用(量)原理证明了Snell定律,验证了Snell定律在左手材料中的适用性,并且得到Fresnell公式在左右手材料中的一致性。
In this paper,we psesented that the principle of least action or Hamilton principle is ample and necessary condition of Lagrangian equation,pointed out the properties of Lagrangian function briefly,and gave the generalization and application of Lagrangian function in physics.
本文论述了力学最小作用(量)原理或哈密顿原理是拉格朗日方程的充分必要条件,简述了拉格朗日函数的性质,指出最小作用(量)原理及拉格朗日函数在物理学中的推广及应用。
This paper discusses the mechanical properties of noncontemporaneous variation,from which the Hamilton principle and the principle of least action are derived.
本文讨论了非等时变分的力学性质,并由此导出Hamilton原理和最小作用(量)原理。
The application of the least-action principle in electricity;
最小作用(量)原理在电学中的应用实例
According to the Least-action principle,Distribution of Charge on Conductor surface is discussed by using of method of Lagrange s multiplier,and some useful results are obtained.
依据最小作用(量)原理,利用Lagrange乘数法讨论了导体上电荷的分布问题,得到了一些有用的结果。
This paper analyses the development process of the least-action principle in physicsis and discusses its internal implications and functions.
分析物理学中最小作用(量)原理的发展和形成过程,并讨论其在基础物理学、理论物理学中的地位和重要作用,以及其深刻内涵。
The interaction between two coherent dark solitons of nonlinear Schrodinger equation is derived using the least action principle aproach.
利用最小作用(量)原理导出非线性 Schrodinger方程两个相干暗孤子之间的相互作用 。
The interaction between two dark solitons of nonlinear Schrdinger equation is derived using the least action principle approach.
用最小作用(量)原理导出了非线性Schr dinger方程两个暗孤子间的相互作用,作为孤子间距Δ和初位相差θ的函数,它随Δ的增大而指数地衰减,当两个孤子间初位相差θ<π2时几2时相互吸引,θ=π2时相互排斥,θ>π乎不存在相互作用;数值计算与解析结果相符,也验证了与已有理论的有效性一致性。
The interaction between two dark solitons is derived from nonlinear Schrodinger equation by the least action principle approach.
利用最小作用(量)原理,从非线性Schrdinger方程,导出两个暗孤子之间的相互作用。
In this paper we review historical development of the principle of least action,pointing out its important rolein modern physics and cosmology.
本文评述了最小作用(量)原理的历史发展,指出了它在现代物理学、现代宇宙学中的重要地位,探讨了作用量概念的物理意义以及最小作用(量)原理的哲学意义。
Therefore, the principle of least action in heat transfer is studied and new principles are developed.
自然界众多的运动都是沿着“用力最小”的途径进行,在物理学上表现为许多物理现象遵循最小作用(量)原理。
This paper presents the calculated method of the minimum reflux ratio Rm when the state parameter of inputing material q is of any value.
该文得出了二元精馏计算中进料状态参数为任意值时最小回流比R_m的计算方法。
This paper analyzed the relationship between the minimum pressure angle or the touch stress in high join and the datum circle/rolling radius,and proposed the choice principles and methods of the minimum basic size of cam.
文章从机构最小压力角及高副接触应力等2个方面分析讨论了基圆半径及滚子半径与它们的关系,并提出了凸轮机构最小基本尺寸的选择原则方法。
A minimum ring-band mathematical definition :In the done ring-band, there are at least two inner points and two outer points which scatter staggeringly on the circumference.
提出了一种最小环带的数学定义:作出的环带上存在至少二个内点与二个外点在圆周上呈交错排列,以此定义作为搜索结束的准则,给出了一种计算最小环带的数值算法:以交错排列的四点作环带,不断用新点取代旧点作环带直到所有的点都在环带内为止。
Wastewater minimization is an environmental problem through improving the process to fully minimize wastewater so as to save water resource.
废水量最小化是通过改进流程尽量减少废水生成量而节约水资源的环保课题。
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号