A conclusion is drawn that the K0 groups of simple C*C*-algebras which possess tracial-NG properties have NG properties.
研究C*-代数K0群的弱无孔性质、Riesz内插值性质,把这2种性质统称为NG性质;并且引入具有迹-NG性质的C*-代数概念。
One *-isomorphism of C*C*-algebras must be (completely) isometric map, but the inverse is not.
C*-代数的*-同构一定是(完全)等距映射,反之不然。
The paper also presents the answer to the lifting problems of the projections of the corresponding quotient C*C*-algebras.
利用C*-代数I具有由投影组成的近似单位元的条件,给出了一类M(I)中以I作为理想的C*-子代数,证明每一个这样C*-子代数的任何元素,均为弱拟对角化以及这些C*-子代数之间的关系,同时回答了相应商代数投影的提升问题。
An introduction to the definition of the simple tracial limit of C~*-algebra is first made in this paper.
引进了简单迹极限的相关概念,简单介绍了与C*代数SP性质密切相关的F性质,并且得到了非基本的单的具有SP性质的C*代数具有F性质。
In this paper,we show that if A is a simple unital C~*-algebra with tracial stable rank one and SP property,then A has cancellation of projections.
证明了如果A是单的有单位元的C*-代数满足Tsr(A)=1,并且具有SP性质(对于A的任意非零可传C-子代数B,B都包含一个非零的投影),则A具有投影的消去律。
This paper studies the properties of a matrix-trace on C~*-algebra M_n(A) which is a positive linear mapping τ∶M_n(A)→A such that τ(u~*au)=τ(a)(a∈(M_n(A),)u∈U(M_n(A))) and τ(a~2)≤(τ(a))~2(a≥0), and obtains some inequalities.
C*-代数Mn(A)上矩阵迹是一个正线性映射τ∶Mn(A)→A且满足τ(u*au)=τ(a)(a∈Mn(A),u∈U(Mn(A)))及τ(a2)≤(τ(a))2(a≥0)。
The α-Power Geometric Mean and Generalized Spectral Geometric Mean of Two Positive Definite Elements in a C~*-algebra;
引入并研究了C*-代数中两个正定元a与b的α-幂几何平均gα(a,b)与广义谱几何平均Eα(a,b),且由此证明了一系列相关的性质和定理。
Haar Measures on C~*-bialgebras;
C双代数上的Haar测度
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号