Mis-acceptance and mis-rejection in product examination and analysis of quality loss function;
测量检验中误收、误废和质量损失函数的分析
Research on stochastic facility layout problem based on loss function;
基于损失函数的随机设施布局优化分析
Multi-output support vector regression with piecewise loss function;
具有多分段损失函数的多输出支持向量机回归
The sample size in random sampling can then be determined through forming the lost function.
在随机抽样的前提下,应首先定性地分析样本容量确定的影响因素,然后对精度和费用这两个可以量化的因素进行定量分析,并通过构建损失函数达到确定随机抽样样本容量之目的。
Finiteness of the V γ dimension of the set of Huber loss function for regression is studied in a ball of radius R in an infinite dimension RKHS,and an upper bound of it is estimated.
研究了无限再生核希尔伯特空间 (RKHS)中半径为R的球内回归估计的Huber损失函数集Vγ 维的有限性 ,给出其Vγ 维的上界估计 ,从而保证此类回归机器的依概率一致收敛 ,使其具有较好的推广能
Bayesian estimation of geometric distribution parameterunder entropy loss function;
熵损失函数下几何分布参数的Bayes估计
In this paper,the formula of Expect Bayes estimation of the reliability under entropy loss function for geometric distribution have been given,when the prior distribution of the reliability is power distribution and βdistribution.
研究几何分布可靠度的先验分布分别为β分布和幂分布时,在熵损失函数下给出了可靠度的EB估计,并结合实际数据比较了两种先验分布下估计值的精度。
This paper considers comparison of MINQUE and simple estimator of Σ in the mult-ivariate normal linear model Y-N(XB, Σ V) under the risk of entropy loss function and symmetry loss function criterion, where the design matrix X need not have full rank and the dispersion matrix V can be singular.
并证明了,在熵损失函数下,MINQUE估计总是优于简单估计。
Under Linex loss function L(θ,δ)=ec(δ-θ)-c(δ-θ)-1,c>0,It is proved that the unique Bayes estimator δB(x),the multilayer Bayes estimator δ^B(X) and the general form of the admissible estimator are δB(X)=-1cln E(e-cθ|X)=n+αcln(1+cλ+T),δ^B(X)=-1cln(∫c0∫10Kλα(λ+c+T)n+αdαdλ∫c0∫10Kλα(λ+T)n+αdαdλ) and Sln(1+cd+T) respectively for the scale parameter reciprocal of the Rayleigh distribution.
在Linex损失函数L(θ,δ)=ec(δ-θ)-c(δ-θ)-1,c>0下,给出Rayleigh分布的尺度参数倒数的唯一Bayes估计δB(X)=-1/clnE(e-cθ│X)=(n+α)/cln(1+c/(λ+T)),多层Byaes估计δ∧B(X)=-1/cln,和容许性估计的一般形式Sln(1+c/(d+T))。
First, we obtain the empirical Bayesian estimator of the scale parameter for the double exponential distribution based on LINEX loss function and the convergence rate of the estimate.
首先利用非对称的LINEX损失函数对双指数分布族刻度参数进行了经验贝叶斯估计,并讨论了该估计的性质,给出了收敛速度。
Minimax Estimation of Parameter of a Class Distributions under the Squared Log Error and MLINEX Loss Functions
对数误差平方损失函数和MLINEX损失函数下一类分布族参数的Minimax估计
Parameter Design for Asymmetric Loss Function Coefficient
非对称质量损失函数系数的参数设计
Bayes Estimation of Several Distribution under the Entropy Loss Function;
熵损失函数下几种分布参数的Bayes估计
Two Loss Functions of Quality Level and Parameter Design;
两类损失函数的质量水平与参数设计
Bayesian estimation of geometric distribution parameterunder entropy loss function;
熵损失函数下几何分布参数的Bayes估计
Bayesian Estimate of Poisson Distribution Parameter Under Entropy Loss Function;
熵损失函数下Poisson分布参数的Bayes估计
Improvement on NPKMR Method Based on Norm-r Loss Function
基于r范数损失函数的NPKMR方法改进
EWMA Chart Based on Weighted-Loss-Function;
基于加权损失函数下的EWMA控制图
Credibility Premium Under Relative Loss Function;
相对损失函数下的倍度保费(英文)
The Study SEA Model Based on Taguchi Quality Loss Function;
基于田口质量损失函数的SEA模型研究
A Study on Multivariate Quality Loss Functions Based on Signal-to-Noise Ratios;
基于信噪比的多元质量损失函数研究
Bayes Inference for the Loss and Risk Function in Levy Distribution Parameter Estimation
Levy分布参数估计的损失函数和风险函数的Bayes推断
The Comparison of Some Process Capability Indices Based on Different Quality Loss Functions;
基于不同质量损失函数的过程能力指数比较
ADMISSIBILITY OF A PARAMETER ESTIMATOR OF A LINEAR MODEL UNDER VECTOR LOSS FUNCTION;
向量损失函数下线性模型中参数估计的容许性
Empirical Bayes Test for the Parameter of One-side Truncated Distribution Families with Linex Loss;
LINEX损失函数下单边截断型分布族参数的EB检验
The Bayesian Estimation of Pareto Distribution Parameter under the Q-symmetrical Entropy Loss Function
Q-对称熵损失函数下Pareto分布参数的Bayes估计
The Bayesian Estimate of the Orders of MA(q) Models of Time Series
MA模型阶数在平方损失函数下的贝叶斯估计
Optimization Design of a Cusum Control Chart Based on Taguchi s Loss Function;
基于田口质量损失函数的EWMA控制图的最优设计
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号