Research on unascertained clusters on the gas emission of the working face;
矿井工作面瓦斯涌出量的未确知聚类研究
Research on the prediction of gas emission in working face based on neural network;
工作面瓦斯涌出量的神经网络模型预测研究
Stepwise regression method for predicting gas emission from coal faces
采煤工作面瓦斯涌出量预测逐步回归方法
Main controlled factors of gas emission quantity in oil-gas mine;
煤、油、气共存矿井瓦斯涌出量主控因素的确定
Prediction for gas emission quantity of the working face based on LS-SVM;
基于LS-SVM的回采工作面瓦斯涌出量预测
Based on the different-source gas emission quantity prediction theory,the BP nerve network was applied to predict respectively the gas emission quantity from the mining coal seam,neighboring coal seam and goaf of working face.
基于回采工作面瓦斯涌出分源涌出,利用人工神经网络分别预测开采煤层、邻近煤层、采空区3种来源的瓦斯涌出量;因3种来源瓦斯涌出量的影响因素不同,为了避免不相关因素的干扰,提高预测精度,确定整个预测体系由开采层、邻近层、采空区等3个瓦斯涌出量预测神经网络组成,对每个涌出源分别建立神经网络预测模型;最后采用Matlab中BP神经网络算法,针对实际矿井进行应用,预测误差小。
The Finite difference method was applied to simulate the dynamic variation of gas pressure in coal seam around a developing roadway and gas emission rate on the airway surface.
结果表明:当工作面以一定的速度向前掘进时,巷道周围瓦斯压力分布呈子弹头形状向前移动,掘进巷道周边煤层瓦斯压力随煤壁暴露时间的增长逐渐降低,工作面瓦斯涌出量呈锯齿状周期增加。
With the caving mining method(comparing with the caving slicing method),the relative gas emission rate has decreased,and the increasing rate of the absolute gas emission is less than that of the output,but the gas emission rate is maximum in each production process during the drawing.
与顶分层开采对比, 放顶煤开采相对瓦斯涌出量降低, 绝对瓦斯涌出量增加倍数小于产量提高倍数, 各生产工序以放煤时瓦斯涌出量最大; 沿顶掘巷的平均瓦斯涌出量是沿底掘巷的1 。
Based on the theory of mathematical statistics,the regression analysis model between relative gas emission rate(q)and the thickness(H)and breakage degree(B)of coalbeds with same level of -450 m in Xiejiaji No.
利用数理统计学原理,建立了淮南谢二矿-450m水平不同煤层的相对瓦斯涌出量与煤层厚度、煤层结构破碎程度的回归分析模型,表明在同一地质单元同水平条件下,煤层厚度越大,结构越破碎,其相对瓦斯涌出量越
Based on the gas geology information of combined mining faces of Chenjiashan Coal Mine that contains coal and oil gas,it is researched that the main geologic and productive factors controlling gas gushing quantity of mining faces using the relating analysis method of gray system theory.
以煤系含油气的陈家山煤矿综采工作面瓦斯地质资料为依据 ,应用灰色系统理论中的关联分析方法 ,在研究影响采面瓦斯涌出量主控地质与生产因素的基础上 ,借助人工神经网络理论中的BP网络方法 ,建立了综采工作面瓦斯涌出量预测的BP网络模型。
Predict gas emissing quantity of mining coal face with improved Grey Markov model;
改进的灰色马尔柯夫模型预测采煤工作面瓦斯涌出量
Bastd on dealing with the initial data of the gas emissing quantity of mining coal face by natural logarithm,the improved grey model(1,1) is built.
通过对回采工作面瓦斯涌出量原始数据取自然对数为基础,建立改进的GM(1,l)模型。
The principle of gas bearing and the feature of gas emission at Xidewang mine are analysed and studied,and gas emissing quantity is predicted for the development of deep mining and the prevention of gas disaster at Xiandewang mine by use of the ratio method of gas emission to gas methane and the method of gas geologic interrelating factor.
分析了矿井瓦斯赋存规律 ,研究了瓦斯涌出特点 ,采用瓦斯涌出量与瓦斯含量比值法及瓦斯地质相关因素分析法 ,对矿井瓦斯涌出量进行了预测 ,为矿井深部的开采和灾害防治提供了科学依
Prediction on Gas Emission and Gas Drainage base on Elevation
根据标高预测瓦斯涌出量和瓦斯抽放
Study on Width of Gas Drainage Zone in Coal Roadway Based on Gas Emission
基于瓦斯涌出量的煤巷瓦斯排放带宽度研究
The Study of the Prediction of the Amount of the GAS Emission and Its Influencing Factors in Liyazhuang Coal Mine;
李雅庄煤矿瓦斯涌出量预测及瓦斯涌出影响因素的研究
The Law of Gas Emission for the Full-Mechanized Mining Working Face and the Prediction of the Gas Emission Quantity;
综采工作面的瓦斯涌出规律及瓦斯涌出量的预测
The Research and Application of Forecasting Working Face Gas Emission;
工作面瓦斯涌出量预测的研究与应用
Research on Prediction Technology of Gas Emission in Zhaoguan Mine
赵官煤矿瓦斯涌出量的预测技术研究
Gas Emission Forecast Based on Wavelet Transform and Genetic-Least Square Support Vector Machine
基于WT与GALSSVM的瓦斯涌出量预测
Forecasting Amount of Gas Emission Using Gaussian Process Machine Learning Model
瓦斯涌出量预测的高斯过程机器学习模型
Prediction model of support vector machine for gas emission quantity of fully mechanized roadway driving face
综掘工作面瓦斯涌出量的支持向量机预测模型
Forecasting gas pushing based on intelligent support vector regression
基于智能支持向量回归的瓦斯涌出量预测
Study on the Gas Emission Quantity Prediction and the Gas Migeration Law of the Fully-Mechanized Face
综采工作面瓦斯涌出量的预测及瓦斯运移规律的研究
The Application of the Methods of Tend Surface Analysis for the Prediction of the Gas Emission
趋势面分析法在瓦斯涌出量预测中的应用
Research on Forecast of Mine Gas Emission Based on Genetic Algorithm and Neural Network;
矿井瓦斯涌出量的遗传神经网络预测研究
Prediction Model for Mine Gas Emission Volume with Radial Basis Function Network
矿井瓦斯涌出量的径向基函数网络预测模型
Stepwise regression method for predicting gas emission from coal faces
采煤工作面瓦斯涌出量预测逐步回归方法
Analysis on Influencing Factors of Gas Emission with Boreholes to Determine Drainage Radius
钻孔瓦斯涌出量确定排放半径影响因素分析
Study on Prediction Model of Mine Gas Emission Based on Grey Theory
基于灰色理论的矿井瓦斯涌出量预测模型研究
Forecasting Method of Grey Theory and Wavelet Neural Network for Mine Gas Gushing
矿井瓦斯涌出量的灰色小波神经网络预测模型
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号