The new integral formula with weight factors for a strictly pseudoconvex polyhedron with non-smooth boundary;
具有非光滑边界强拟凸多面体带权因子的新积分公式
Integral Formula with Discrete Holomorphic Kernel and ?-Equations on Bounded Domain;
有界域上具有离散全纯核的积分公式及其相应的?-方程
In this paper we analyze the revolver of the curve revolving around the straight line,discuss the calculations of the area and volume of the revolver,get two integral formulas of the calculations of the area and volume,and illustrate the application of the formulas with examples.
针对数学分析中平面上曲线绕平面上任意直线旋转一周而形成的旋转体进行分析研究,运用微元分析法,对旋转体体积及旋转体与过该直线的截平面相交所得面积进行讨论,得到相应的积分公式,并举例说明公式的应用。
In this paper,the basic theory of stochastic systems of It type is summarized,including the It stochastic analysis,the definition of It stochastic differential equations,It differential formula and the theorems on existence and uniqueness of solutions of It stochastic differential equations.
综述It型随机系统的基本理论,包括It随机分析、It随机微分方程的定义、It微分公式、It随机微分方程解的存在唯一性定理,作为新结果,还证明了分布参数时变It随机系统解的存在唯一性定理。
Based on the stationary variational formula satisfied by the propagation constant of planar line, the variational formula of the bilateral slot line propagation constant which takes only the slot tangential electric field as variable is given.
运用镜像法简化了偶模激励双面槽线的分析模型,基于平面传输线传播常数满足的稳定的变分公式,给出了仅以槽口切向电场为变量的传播常数满足的变分公式。
A novel stationary variational formula in spatial domain and in spectral domain respectively for calculation of planar line propagation constant is presented based on the exact theory of electromagnetic field.
基于严格的电磁场理论 ,给出了一种新的分析平面传输线传输特性的空域及谱域的稳定变分公式 。
In this paper the computation method for the points on the easement curve is derived by integration formula and realized on the CASIO fx4500 and CASIO fx4800 calculators by programming.
为此利用积分公式推导求出内外缓和曲线上点的计算方法 ,并借助CASIO fx45 0 0、CASIO fx480 0计算器编程来实现。
By building and using the evaluate formula S ,it is obtained that lie detection validities of this experiment is 92%.
1Hz ,应用所构造的评分公式S得出测谎成功率为 92 %。
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号