Matrix Expression of Mine Ventilation Network Graph and Its Computer Method Based on MATLAB;
基于MATLAB的矿井通风网络图的矩阵表示及电算方法
The study of enterprise work safety responsibility matrix;
企业安全生产责任矩阵研究
Symmetry and matrix representation of octagonal point groups in quasicrystal;
准晶体中八方晶系点群的对称性与矩阵表示
Algebraic structure and properties of generalized Pascal matrices;
广义Pascal矩阵代数结构及性质
Transforming matrices in point engagement worm transmission;
点啮合蜗杆传动中的变换矩阵
The square matrix is called a diagonal matrix.
该方矩阵称为对角矩阵。
The matrix is defined as the reciprocal of A.
该矩阵定义为A之逆矩阵。
If A is the mxn matrix, then the nxm matrix is called the transpose of A.
如果A是mxn矩阵,那么nxm矩阵为A的转置矩阵。
Some Common Properties Among Invertible Matrix,Adjoint Matrix and Inverse Matrix
可逆矩阵及其伴随矩阵、逆矩阵的一些共同特性
block multiplication of matrices
矩阵的分块乘法;矩阵的分块乘法;矩阵分块乘法;矩阵分块乘法
Inverse Matrix of Triple-diaganal Symmetry Toeplitz Matrix;
Toeplitz矩阵逆阵的一种解法
Another matrix associated with G is the adjacency matrix.
伴随于G的另一个矩阵是邻接矩阵。
transform a matrix to a diagonal matrix.
把一个对角矩阵转化成对角矩阵。
The Inverse Eigenvalue Problems for Jacobi and Periodic Jacobi Matrices;
Jacobi矩阵及周期Jacobi矩阵特征值反问题
Constructing Disjunct (Separable) Matrices and Studying the Properties;
disjunct矩阵和separable矩阵的构作及性质
A Calculation Method for Generalized Inverse Matrix of Rectangular Matrix;
长方形矩阵的广义逆矩阵的计算方法
Idempotent - Hermite Matrix and Decomposition of Matrices;
幂等的Hemite矩阵与矩阵的分解
An Elementary Transformation Method for Computing the Generalized Inverse of Matrix;
求λ-矩阵广义逆矩阵的初等变换法
The Reduction about Polynomial Bezout Matrix and the Inverse of Vandermonde Matrix;
多项式Bezout矩阵的约化与Vandermonde矩阵的逆
The Inverse Matrices of Arithmetical Hankel Matrices;
等差序列构成的Hankel矩阵的逆矩阵
Calculating Inverse Matrix of Partitioned Matrix with Generized Elementary Transformation;
用“广义初等变换”求分块矩阵的逆矩阵
Generalized Inverse Matrices and Properties of Kronecker Product of Matrices over;
有限域F_q上矩阵的广义逆及矩阵Kronecker积
Conclusions of matrix order by using lump matrix;
利用分块矩阵讨论矩阵秩的几个结论
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号