In this paper,at first,We generalize subpositive definite matrix defined by Tu Boxun to(N,1)-generalized positive definite matrix.
本文对被屠伯埙称为亚正定的矩阵类进行了推广,即给出了(n,1)-广义正定矩阵的概念,进而得到了(n,1)-广义正定矩阵的一系列性质,最后将关于正定阵的Hadamard乘积的Schur定理及华罗庚定理推广到(n,1)-广义正定矩阵。
This paper mainly discusses the generalized positive definiteness of product matrices fot a kind of real square matrix(strong commutative matrices),and gives a necessary and sufficient condition for the product of two matrices to be a generalized positive definite matrix.
广义正定阵是正定(实对称)阵概念的推广。
Research on the fast calculation model of positive definite matrix in-situ replacement;
正定矩阵原位替换快速解算模型研究
A sufficient condition of determination a real symmetry matrix into a positive definite matrix;
判定实对称矩阵为正定矩阵的一个充分条件
Oppenheim s inequality over real Symetric positive definite matrix;
实对称正定矩阵上的Oppenheim不等式
Beginning with the basic conceptualism,an optimizing mode is employed to decide weight in general condition and obtained a series of weight methods of covariance matrix which is positive matrix.
文章引入了加权平均量的自收敛性来描绘被评价分数的随机变量的稳定性,以概率论理论为基础,得到了一般情况下权重系数确定的优化模型和协方差矩阵为正定矩阵的一系列的确定权的方法,建立了一套较完整的确定权重系数的理论。
The coefficient matrix of the equations is a kind of positive matrix.
这种方程组的系数矩阵是正定矩阵 ,可用平方根法求解。
According to the definition of subde finite positive matrix, which given by C.
根据 Johnson给出的亚正定矩阵的定义 ,给出了一个关于亚正定矩阵的充分条件 。
In this paper,some new sufficient conditions for verifying the generalized positive definite matrices are given and the relative results reported in the literature are extended.
给出了广义正定矩阵的若干充分条件 ,拓广了广义正定矩阵的相关结果。
The paper have proved (1) if A and B are positive definite matrices and AB=BA.
证明了关于正定矩阵迹的两个命题:(1)设A、B为m阶正定矩阵,且。
B are both positive definitematrices,n a natural number,is it true for tr(AB)~n≤tr(A~nB~n) In this paper,we prove that if A B are both positive definite matrices of rank 2,then the above inequality is true.
B 均为正定矩阵,n 为自然数,是否有:tr(AB)~n≤tr(A~nB~n)本文证明了当 A。
As a result,a kind of positively definite matrix is achieved.
对一类极值问题进行了认真讨论和分析 ,给出了一类行列式的计算 ,并推广了阶乘的概念 ,且得到一类正定矩阵。
By using the method of constructing positively definite matrix,some new results for robust stability of uncertain time_delay systems are derived,and the stability degree is also discussed.
利用构造正定矩阵的方法 ,给出了判别不确定时滞系统鲁棒稳定的几个新结果 ,同时讨论了这类系统的稳定度 。
Two kinds of Stability Matrices and Meta-positive Definite Matrices Extension;
两种稳定性矩阵类及亚正定阵类的扩张
Symmetric Positive Definite Matrices and the Determining Criterions for Non-singular GM-matrices
对称正定矩阵与非奇异GM-矩阵的判定
Hadamard Inequality of Positive Definite Matrix;
正定矩阵的Hadamard不等式
Non-negative matrices and positive definite matries over a C~*-algebra;
C~*-代数上的非负矩阵与正定矩阵
On the Matrix Inequalitiy for the Hadamard Product of Positive Semidefinite Matrices
关于半正定矩阵Hadamard积的矩阵不等式
A Class of Positive Definite Completion Problem for Partial Positive Definite Toeplitz Matrices;
部分正定Toeplitz矩阵的正定Toeplitz完成
The Positive Definiteness of Kronecker Product of Complex Positive Definite Matrices
复正定矩阵的Kronecker积的正定性
A sufficient condition of determination a real symmetry matrix into a positive definite matrix;
判定实对称矩阵为正定矩阵的一个充分条件
The Note to "The Relationship Between Gener alized PositiveDefinite Matrix and Stable Matrix;
关于“广义正定矩阵与稳定矩阵的关系”的注记
A characterization of positive definitecomplex matrices and its application;
正定复矩阵的一个判别定理及其应用
Connections Between Euclidian Distance Matrix and Positive Semidefinite Matrix
欧几里得距离矩阵与半正定矩阵的关系
The Lower Bound of the Determinant for Hadamard Product of an Inverse M-matrix and a Positive Definite Matrix;
逆M-矩阵与正定矩阵Hadamard乘积行列式的下界
Inverse Problem of Matrix Equation of AX=B on the Sub-generalized Positive Definite Matrix;
矩阵方程AX=B在次广义正定矩阵类上的反问题
Positive semi-definite matrices are positive definite if and only if they are nonsingular.
正半定矩阵是正定的,当且仅当它们是非奇异矩阵。
Further Studies on Some Questions in the Theories of Metapositive Definite Matrix and Generalized Positive Definite Matrix;
对亚正定矩阵理论和广义正定矩阵理论中若干问题的进一步研究
a square matrix whose determinant is not zero.
决定因素不为零的正方形矩阵。
a square matrix whose determinant is zero.
决定因素是零的正方形矩阵。
Hermitian Positive Definite Solutions of Two Classes of Nonlinear Matrix Equations;
两类非线性矩阵方程的Hermite正定解
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号