The expression and transformation of refinery stream bulk properties and composition based on molecular matrix;
基于分子(矩)阵的炼油过程物流组成表达及转换
Let γ(A) denote the number of nonzero entries in the inverse of an invertible submatrix A of M(G).
设 M( G)是简单无向图 G的关联矩阵 ,A是 M( G)的可逆子(矩)阵 ,γ( A)是逆矩阵 A- 1中非零元素的个数 。
An equality is proved by discussing the relationship between a matrix and its submatrix and a test statistical variable for the parameter hypothesis test of liner model (Y,Xβ,σ 2I n) is obtained.
通过证明矩阵 X,X′X及其子(矩)阵的一个关系式 ,得到了多元正态线性模型( Y,X﹀,σ2 In)中参数﹀的假设检验问题的检验统计
A new result about the relation between the singular values of an arbitrary matrix and those of its submatrix,which is called generalized interlacing theorem,is presented.
给出关于任意一矩阵与子(矩)阵的奇异值关系 ,称之为广义分隔定理。
However,they are involved with the assumption that the sub-matrix Pθ is invertible.
基于降阶潮流雅可比矩阵的V-Q灵敏度、模态分析等静态分析方法在分析电压稳定方面得到了广泛应用,但降阶雅可比矩阵涉及到系统潮流雅可比矩阵的子(矩)阵Pθ可逆的问题,针对此问题,该文首先结合数学矩阵理论及电力系统的实际情况就矩阵Pθ是可逆矩阵给出明确的证明,为基于降阶雅可比矩阵的应用提供理论支持。
A novel fast approximative algorithm, where the flexible sub-matrixes were selected according to the node position of oil film pressure on bush loading surface,was then presented .
采用APDL语言编写专门的计算程序来自动求取变形矩阵,并根据变形矩阵的特点,提出了一种在轴承承载区油膜压力对应节点位置处动态截取子(矩)阵的快速近似新算法。
Program diagnosis method based on operator matrix model;
基于算子(矩)阵模型的程序诊断方法
The necessary and sufficient conditions are obtained for the existence of the rational solutions of differential equations by constructing the differential operator and establishing the operator matrixes,and the corresponding results collected in Ref.
本文主要利用在文[4]中得到的一个定理,通过构造微分方程的线性算子的方法,得到了一个关于微分方程的算子(矩)阵,从这个算子(矩)阵向量的线性相关性得到了微分方程存在有理式解的充分必要条件,并举例给出求有理式解的具体方法。
By using the block operator matrix,when the range of A is closed,the sufficient and necessary conditions for the existence of solutions and positive operator solutions of the operator equation AXA*=B and the representation of the solutions are established.
文中利用算子分块的技巧,在算子A值域闭的情况下讨论了算子方程AXA*=B解及其正解存在的充要条件并用算子(矩)阵的形式给出了它们的具体表示。
It is known that Hat Matrix is very important in the influence analysis of the unconstrained regression.
影响分析是研究回归问题的一个重要环节 ,提到影响分析 ,必须引进帽子(矩)阵 。
Hat matrix has special effect in regression diagnostics and residual analysis.
帽子(矩)阵在回归诊断 ,残差分析中有着特殊的作用 ,讨论帽子(矩)阵H =(hij)元素的性质非常重要。
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号