With the combination of the ontology-based theories and the introduction of the mathematics morphology operators,it unified the spatial topology relations judgment and the spatial direction relations judgment,and made integrative reasoning of multi-aspect spatial relations based on ontology.
结合本体论的理论基础,在引入数学形态学算子的基础上,把空间拓扑关系和空间方向关系结合起来,进行基于本体的多方面空间关系组合推理。
Making use of general Pettis integral,operator-valued mathematical expectation and continuous modified modulus,this paper has deduced the probabilistic approximation and convergent rates about exponentially bounded C-semigroups, which has improved existing results.
借助广义Pettis积分、算子值数学期望、连续修正模等概念,得到了指数有界C半群的概率型逼近式及收敛速度的估计式,改进了已有的结果。
And the relation between the S hyperreflexivity and the hyperreflexivity of operator algebras is discussed.
在自反Banach空间上引入S超自反的概念,讨论了S超自反与算子代数超自反的关系,同时讨论了超自反算子代数直和的超自反性。
We prove the following theorem: Suppose that C0(U),C1(U,L,R,D,V),C2a(U),C2b(U,R),C3a(U),C3b(U,R) are, respectively, classes 0,Ⅰ,Ⅱa,Ⅱb,Ⅲa andⅢb of general symmetric operator algebras on spaceⅡk.
本文研究Pontrjagin空间上一般算子代数弱闭和一致闭的等价条件,得到定理:设C0(U),C1(U,L,R,D,V),C2a(U),C2b(U,R),C3a(U),C3b(U,R)分别是Ⅱk空间上第0,Ⅰ,Ⅱa,Ⅱb,Ⅲa和Ⅲb类的算子代数,则(1)C0(U),C2a(U)或C3a(U)为一致闭(弱闭)的等价条件是U是Hibert空间G上的C*-代数(W*-代数;(2)C1(U,L,R,D,V)为一致闭(弱闭)的等价条件是U是Hibert空间H上的C*-代数(W*-代数),并且R是闭子空间,V是闭算子,L对称闭的;(3)C2b(U,R)或C3b(U,R)为一致闭(弱闭)的等价条件是U是Hibert空间H上的C*-代数(W*-代数),并且R是闭子空间。
The concept of generalized T_derivation is introduced and the properties of T_derivations on pure algebra and operator algebras are obtained.
引进T_导子的概念 ,刻划了一般代数和算子代数上的T_导子的特征性质 。
Although count operator was used effectively in the process of data preprocessing, abusive use would cause the inconsistent problem of attribute relationship.
包括计数算子在内的属性构造技术往往能够提高数据挖掘模型的预测精度,但不加条件地使用会导致属性关系不一致问题。
Vector-valued multiplier convergence of operator series;
算子级数的向量值乘数收敛(英文)
A theorem on uniform convergence of operator series;
关于算子级数赋值一致收敛的一个定理
The characteristic of c0(X)-evaluation uniform convergence of operator series is obtained in this paper.
给出了(X,L(X,Y))中算子级数的c0(X)-赋值一致收敛的特征。
Abstract An edge detection algorithm based on multi-scale morphology was presented.
提出了一种基于数学形态学算子的多尺度边缘检测方法。
An Edge Detection Operator Based On Mathematic Morphology
一种基于数学形态学的边缘检测算子
Research on Morphological Filter Algorithms Based on Mathematical Morphology;
基于数学形态学的形态滤波算法研究
Edge Detection Method based on Canny Algorithm and Mathematical Morphology
基于Canny算子与数学形态学的细胞边缘提取
Draw the fast algorithm on a kind of edge based on mathematics morphology and improved SUSAN operator
一种基于数学形态学与改进的SUSAN算子边缘提取快速算法
In this paper the basic concepts and operations of mathematical morphology were introduced.
介绍了数学形态学的基本思想和运算。
Research on Image Processing Algorithms Based on Mathematical Morphology;
基于数学形态学的图像处理算法研究
Fog image enhancement algorithm based on mathematical morphology
基于数学形态学的雾天图像增强算法
A Robust Watermarking Algorithm for Gray Images Based on Morphology
一种基于灰度数学形态学的水印算法
Edge Detection for Chest Hydrocele Desquamate Cell Based on Combining of Canny Algorithm and Morphology
基于Canny算子与数学形态学结合法对胸水脱落细胞边缘的提取
Suppressing Eyelash Interference Based on Morphological Operator
基于形态学算子的睫毛干扰抑制算法
A text digital watermarking algorithm based on mathematical morphology
一种基于数学形态学的文本数字水印算法
Edge Detection Algorithm for Remote Sensing Image Based on Mathematical Morphology;
基于数学形态学的遥感图像边缘检测算法
Research on Video Compression Algorithm Based on Wavelet Domain and Mathematical Morphology;
基于数学形态学的小波域视频压缩算法研究
Research of Image Processing Algorithm Based on Mathematic Morphology;
基于数学形态学的图像处理算法的研究
The Research and Application of Mathematical Morphology Based on Soft Computing;
基于软计算方法数学形态学的研究与应用
Image edge detection algorithm of mathematical morphology based on VC++6.0;
利用VC++6.0实现数学形态学图像边缘检测算法
An Algorithm for Extracting Ravine Density Based on Mathematical Morphology;
一种基于数学形态学的沟壑密度提取算法
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号