Descartes ray and character of round-section fibers;
圆形截面纤维的笛卡尔线及特征
Later, the angle decreases again, the ray of the maximal included angle position is called the Descartes ray.
一束平行光线垂直于圆柱形纤维轴照射,光线进入纤维经过两次折射和一次内表面反射后出射,入射光线偏离轴光线愈远(通过纤维截面中心沿原路反射回来的光线称为轴光线),它经过纤维出射的光线相对于入射光方向的夹角就愈大,达到某一位置时夹角达到了最大值,之后夹角又开始减小,这一最大夹角位置的光线称为圆柱形纤维的笛卡尔线。
But skin-core structure and the Descartes ray of internal surface reflection haven’t been involved.
目前对单根纤维的反光性能研究较少,主要涉及了表面反射光、透射光、内表面反射光这些方面,对纤维的皮芯层结构、其内表面反射光的笛卡尔线现象等没有涉及。
The relation between the Cartesian product and authentication codes is studied in this paper.
该文研究了笛卡尔积与认证码的关系,根据笛卡儿积的结构特点,提出了一种将认证符信息嵌入到编码规则的思想,从工程应用的角度实现了基于笛卡尔积的各阶欺骗概率相等的最优Cartesian认证码的构造,并给出了基于笛卡尔积和拉丁方的各阶欺骗概率相等的安全认证码的构造方案。
Through the analysis of the second power Cartesian product of natural number set N——N×N and the thirdpower Cartesian product of natural number set N——N×N×N,obtains the conclusion that they all have the bijective relation to natural number set N,it means that the set N×N and the set N×N×N are all countably infinite.
通过对自然数集合N的二次笛卡尔积运算———N×N和三次笛卡尔积运算———N×N×N的详细分析,得出了它们与自然数集合N之间都存在双射关系结论,即集合N×N和集合N×N×N都是可数无穷的。
There is no results of the crossing numbers of Cartesian products of paths with the circulant graphs having more than six vertices.
目前没有有关七阶图与路、星和圈的笛卡尔积交叉数的结果,我们证明了7阶循环图C(7,2)与路P_n的笛卡儿积的交叉数是8n。
And the formulae for estimatingthe edge-toughness of Cartesian product and Kronecker product of some special graphs are presented.
证明了一类r-正则r=κ′(G)连通非完全图G的边坚韧度近似等于r/2(1+(1/│V(G)│-1))并且提供了估计一些特殊图类的笛卡儿积和Kronecker积的边坚韧度的公式。
Product topology and box topology are two methods for introducing topologies in general Cartesian product,both of them are generalization of the concept of finite product topology.
积拓扑与箱拓扑是在拓扑空间族的笛卡儿积上引进的2种不同的拓扑,它们都是有限积拓扑的推广,对这2种拓扑作以比较是有益的。
This paper discusses the upper chromatic number of the Cartesian product of co-hypergraphs.
讨论反超图的笛卡儿积的着色理论 ,求出了满足一定条件的反超图的笛卡儿积的上色数 。
It is proved that the crossing number of Hn is Z(5,n)+n+n2], and the crossing number of Cartesian products of W4 and K1,n is Z(5,n)+2n+n2].
证明了Hn的交叉数为Z(5,n)+n+﹂2n],并在此基础上证明了轮W4与星K1,n的笛卡尔积的交叉数为Z(5,n)+2n+﹂2n]。
LetG1×G2 be the cartesian products of G1 with G2,V(G1×G2)=V(G1)×V(G2),E(G1×G2)={(u1,u2)(v1,v2)|u1=v1 and u2v2∈E(G2),or u2=v2 and u1v1∈E(G1)}.
两个图G1和G2的笛卡尔积图G1×G2是这样一个图:V(G1×G2)=V(G1)×V(G2),E(G1×G2)={(u1,u2)(v1,v2)|u1=v1且u2v2∈E(G2),或者u2=v2且u1v1∈E(G1)}。
In this paper,we prove the crossing number of Cartesian products of W_5 with S_n is 6「n/2」「(n-1)/2」+2n+3「n/2」+3「n/2」(「x」denotes the maximum integer that is no more than x),also we abtain the crossing numbers of Cartesian products of some sungraph of W_5 with S_n.
目前,对于六阶图与星图笛卡尔积的交叉数知之甚少。
The method of Descartes′ construction for 7 and 8 degree equations;
七、八次方程的笛卡儿做图
Wittgensteiin:Breaker of Descartes Tradition;
突破笛卡儿式传统的维特根斯坦
Cogito :from Descartes to Sartre;
“我思”:从笛卡儿到萨特
The Unusual Talents:Descartes and Pascal;
异样的天才:笛卡尔与帕斯卡
The Contribution of Descartes on Physcis Thought;
笛卡尔在物理思想上的贡献
I can not walk out——Enlightenment of Lost of Descartes and Fichte s Philosophy;
走不出的“我”——笛卡尔与费希特哲学迷失的启示
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号