In this paper,we discuss the iteration algorithm for linear Fredholm integral equations of the second kind.
讨论第二类线性Fredholm积分方程Galerkin解的迭代,在Long给出的迭代算法的基础上,提出一种简化的迭代算法,并保留其迭代解的精度。
In this paper, we apply Laplace transform to obtain an integral representation for the solution for American call options with continuous dividend, and get a nonlinear Volterra integral equation of the second kind for the optimal exercise boundary.
本文利用Lalplace变换方法得到带连续红利的美式石看涨期权价格的积分表示,以及最优执行边界满足的一个非线性的第二类Volterra积分方程。
In the linear integral equation φ(x)=f(x)+λ∫b ak(x,t)φ(t)dt,when the scope of λ extends from λ<1 (b-a)maxx,tk(x,t) into λ<1maxx ∫b ak(x,t)dt, the above equation also has its only solution.
线性积分方程 φ(x) =f(x) +λ∫bak(x ,t) φ(t)dt中 ,λ的取值范围由 λ <1(b -a)maxx ,t k(x ,t) 拓广为λ <1maxx ∫ba k(x ,t)dt时仍有唯一解。
The linear integral equation φ(x)=f(x)+λ∫b ak(x,t)φ(t)dt has its unique solution after the extension of the scope of parameter λ,and if separate the function k(x,t)into the products of function H(x) and G(t),the general solution form of the equation is φ(x)=f(x)+αH(x),(α is a constant).
拓广线性积分方程φ(x)=f(x)+λ∫bak(x,t)φ(t)dt中参数λ的取值后,方程仍有唯一解,且当k(x,t)可以分离为两函数H(x)与G(t)之积时,该方程解的一般形式为:φ(x)=f(x)+aH(x)(α为常数)。
As an application,we utilize this result to study the existence problem of solutions for some kind of nonlinear integral equations.
得出了一个新的不动点定理,推广了Alt man不动点定理,并利用这一新的不动点定理研究了一类非线性积分方程解的存在性问题。
This paper deals with the problem for solving a class of nonlinear integral equations in reproducing kernel space W(Ω) .
本文在再生核空间中,利用再生核把非线性积分方程化为线性积分方程,研究了此类方程的求解问题,揭示了此类方程解的结构,存在性及多解等问题。
The authors study the prob1em for so1ving a c1ass nonlinear integral equation in the reproducing kernel space W_2~1[a, b].
在再生核空间中,利用再生核方法,把一维非线性积分方程K_1uK_2u=f转化为二维线性算子方程Ku=f。
Furthermore, we utilize our results to study the non zero solution and positive solution and properties of the solution for a class of the nonlinear integral equations, and some new results are obtained.
得到凝聚映象的几个新的不动点定理 ,并用到一类非线性积分方程的非零解、正解和解的性状的研究上得出了新的结果 。
linear integral equation of the third kind
第三种线性积分方程
Integrability Conditions of A Class of Third-order Nonlinear Differential Equation;
一类三阶非线性微分方程的可积条件
Wavelet Galerkin Method for Nonlinear Integral Equations of the Second Kind;
解第二类非线性积分方程的小波Galerkin方法
The First Boundary Value Brblem Of Singularly Perturbed Nonlinear Integro-Differential Equations;
奇摄动非线性积分微分方程组第一边值问题
nonlinear integro-differential equation
非线性积分微分方程
Application of Wavelets on the Interval to Solve Second-Kind Linear Integral Equations Using Galerkin Method;
第二类线性积分方程的Galerkin区间小波解法
A Note on Iteration Methods for Linear Fredholm Integral Equations of the Second Kind
第二类线性Fredholm积分方程迭代算法的一个注记
The General Solution of One Kind of 3-order Variable Coefficients Linear Ordinary Differential Equation;
一类三阶变系数线性常微分方程的可积性
Formula of General Solution to Some Kinds of Third-Order Nonlinear Differential Equations;
几类三阶非线性微分方程的通解(通积分)公式
The Three Sufficient Conditions of Quadrature about Linear Homogenous Differential Equation of Second-order Variable Coefficient;
二阶变系数线性齐次方程的三个可积充分条件
A New Integrable Condition of Third Order Nonlinear Differential Equation;
三阶非线性微分方程一个新的可积条件
Solutions to Several Classes of Nonlinear Differential Equations and Integral Equations;
几类非线性微分方程和积分方程的解
CONVERGENCE ANALYSIS OF THE NONCONFORMING TRIANGULAR CAREY ELEMENT FOR A KIND OF NONLINEAR PARABOLIC INTEGRO-DIFFERENTIAL PROBLEMS
非线性抛物型积分微分方程非协调三角形Carey元的收敛性分析
Solving the Second Kind Linear Fredholm Integral Equations Using RBFNN
应用径向基神经网络求解第二类线性Fredholm积分方程
Asymptotic Behavior of Solutions of Certain Second Order Integro-differential Equations;
二阶非线性积分-微分方程解的有界性
Three Solutions to Second-order Constant Coefficient Inhomogenous Linear Differential Equation;
二阶常系数线性微分方程特解的三种最简解法
A Kind of Special Curve Singular Intergral Equations with Hilbert Kernel
一种特殊曲线上的Hilbert核奇异积分方程
The Existence of Continuous Solutions on a Nonlinear Integral Equation;
一类非线性积分方程连续解的存在性
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号