Strong convergence of Reich-Takahashi iterative sequence for asymptotically pseudo-contractive mapping;
渐近伪压缩映像的Reich-Takahashi迭代序列的强收敛性
Strong convergence of some iterative sequences for asymptotically nonexpansive mappings in Banach spances;
Banach空间中渐近非扩张映象迭代序列的强收敛性
Aim\ The convergence of Mann iterative sequences of real functions defined on unbounded convex domain is discussed.
目的 讨论无界闭凸区域上的实函数的 Mann迭代序列的收敛性 。
For a lot of nonlinear mappings,the fixed points can be approximated by iteration sequence {xn}.
设E是Hilbert空间,T是E中具非空不动点集F(T)的非线性映象,许多非线性映像的多种形式的迭代序列{xn}可逼近映像T的不动点p0∈F(T)。
Convergence of Ishikawa iteration sequence for setvalued nonexpansive mapping are discussed in uniformly covex Banach space, and the conditions are shown which guarantee the convergence of the iteration sequence to a fixed point.
讨论了集值非扩张映象在一致凸Banach空间中Ishikawa迭代序列的收敛性及确保迭代程序收敛到不动点的条件,所得结果是曾六川等的推广和发展。
This article will set up an iteration sequence and extent its results to a more comprehensive mapping-semi-compact 1-set mapping.
本文建立了一迭代序列,将其结果推广到更广泛的一类映射———半紧1-集映射,并削弱了紧性和全连续的条件,得到了乘积空间中的极小、极大耦合不动点定理。
In this paper,it is shown that the convergence of Picard iteration sequence is equivalent to Mann iteration sequence,and the convergence of Mann iteration sequence is equivalent to Ishikawa iteration sequence for Zamfirescu operators in an arbitrary Banach space.
在适当放宽不动点定理的条件下,分别证明了Picard迭代序列与Mann迭代序列收敛定理的等价性以及Mann迭代序列与Ishikawa迭代序列收敛定理的等价性。
In this paper,it is shown that the convergence of Picard iteration sequence is equivalent to Mann iteration sequence,and the convergence of Mann iteration sequence is equivalent to Ishikawa iteration sequence for Zamfirescu operators in an arbitrary Banach space.
在适当放宽不动点定理的条件下,分别证明了Picard迭代序列与Mann迭代序列收敛定理的等价性以及Mann迭代序列与Ishikawa迭代序列收敛定理的等价性。
Based on Kikkawa and Takahashi iteration method,the Mann iteration sequence is introduced to revise them by using Hybrid projection method.
在Kikkawa和Takahashi的迭代算法基础上,引入了Mann迭代序列。
In the present paper,by virture of the new inequality and the new approximation methods, we prove some new convergence theorems of the Ishikawa and Mann iteration sequences for strongly accretive and strongly pseudo-contractive operators in Banach spaces.
用新的不等式及新的逼近方法证明了Banach空间中强增生和强伪压缩算子Ishikawa和Mann迭代序列的若干收敛定理。
In this paper,it is shown that the convergence of Picard iteration sequence is equivalent to Mann iteration sequence,and the convergence of Mann iteration sequence is equivalent to Ishikawa iteration sequence for Zamfirescu operators in an arbitrary Banach space.
在适当放宽不动点定理的条件下,分别证明了Picard迭代序列与Mann迭代序列收敛定理的等价性以及Mann迭代序列与Ishikawa迭代序列收敛定理的等价性。
In arbitrary Banach spaces,it is shown that the convergence of Mann iteration is equivalent to Noor iteration sequence,and the convergence of Mann iteration is equivalent to Ishikawa iteration sequence for generalized-contractive mappings.
对任意实Banach空间中的广义Φ-压缩映射分别证明了Mann迭代序列与Noor迭代序列收敛的等价性以及Mann迭代序列与Ishikawa迭代序列收敛的等价性,所得的结果是2005年S。
The necessary and sufficient condition of strong convergence of the implicit iteration process for a finite family of nonexpansive mappings is proved.
在一致凸Banach空间中,提出了一类新的两步隐迭代序列,证明了此序列收敛到有限族渐近非扩张映象的公共不动点的充要条件。
Newton Generalized Construction of Double-side Iterated Series and Errors Estimation;
Newton一般双侧迭代序列构造及误差估计
Strong Approximation of Mann Iterative Prosess for Quasi-contrative Mapping
拟压缩映象的Mann迭代序列的强逼近
The iterative function sequence of the function f(x)=1/(x+a) and the Fibonacci sequence;
函数f(x)=1/(x+a)的迭代序列与斐波那契数列
Convergence Theorems of Three-step Iteration Sequence with Errors and Modified Three-step Iteration Sequence with Errors for a Pair of Mappings;
相对于—对映射的带误差的三阶迭代序列和修正的带误差的三阶迭代序列的收敛性定理
The Convergence of an Implicit Iteration Sequnces for Strictly Asymptotically Pseudocontractive Mappings;
严格渐近伪压缩映象隐迭代序列的收敛性
Some Convergence Properties of Fixed Point Iterative Sequences for Some Mappings;
几类映射的不动点迭代序列的若干收敛性质
Converging Problem of Strictly Pseudocompress Mapping s Implicit Iteration Sequence;
严格伪压缩映射隐迭代序列的收敛性问题
The CKQ Method for Modified Ishikawa Iterative Sequences Involving Asymptotically Nonexpansive Mappings;
具渐近非扩张映象的修改Ishikawa迭代序列的CKQ方法
Strong Convergence of An Implicit Iteration Process for A Finite Family of Nonexpansive Mappings;
隐迭代序列的有限族渐近非扩张映像的强收敛
The Convergence of Three-step Iterative Sequence for Asymptotically Quasi-non-expansive Mapping;
渐近拟非扩张映象三步Ishikawa型迭代序列的收敛性
Multi-step iterative sequences with error member for asymptotically nonexpansive mappings;
渐近拟非扩张映射中带误差的多步迭代序列
Necessary and Sufficient Conditions for Strong Convergence of Iterative Sequence of Asymptotical Pseudo-contraction Mapping;
渐近伪压缩映象的迭代序列强收敛的充要条件
Some Strong Convergence Theorems for Ishikawa Iterative Sequence with Random Errors;
一类带随机误差的Ishikawa迭代序列的强收敛定理
The Equivalence of Iterative Sequences Convergence for a Class Nonlinear Mapping
关于一类非线性映射迭代序列收敛的等价性
Study on equivalence of iterative sequences for φ-pseudo contractive mappings
含φ-伪压缩映射的迭代序列等价性问题研究
Strong convergence of a modified iterative process for pseudocontractive mappings
m-增生算子弱压缩迭代序列的强收敛性
Iterative sequences for asymptotically pseudo-contractive mappings in arbitrary real Banach spaces
实Banach空间中渐进伪压缩映像的迭代序列(英文)
Convergence of Ishikawa Iterative Sequences with Errors for Asymptotically Nonexpansive Mappings
渐近非扩张映象带误差项迭代序列的收敛性
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号