Discussion on non-homogeneous eigenvalue of diagonal matrices;
对角阵非齐次特征值问题的讨论
Solution for secondorder constant-coefficient non-homogeneous liner differential equation;
二阶常系数非齐次线性微分方程的一个解法
As we all know,for the pan-setting equation with non-homogeneous boundary conditions of treatment,an appropriate substitution of unknown function is usually selected,so that for the new unknown function,the boundary conditions are homogeneous.
众所周知,对于泛定方程的非齐次边界条件的处理,通常是选取一个适当的未知函数之间的代换,使对新的未知函数,边界条件是齐次的。
The definition of a nonhomogeneous tree called an even-odd tree is given.
定义一类非齐次树——奇偶树,利用近年来研究概率论强极限定理的新方法,研究奇偶树上奇偶马氏链场关于状态和状态序偶出现频率的强极限定理,得到奇偶树上马氏链场关于状态和状态序偶出现频率的强大数定律,将齐次树图上马氏链场中的相关结果推广到了非齐次树图上。
On the basis of that, in this paper, we deal with the distributions and moments of integral type functional for nonhomogeneous (H,Q) processes, and obtain computational formula of the distributations and moments.
在此基础上 ,对马氏骨架过程中非齐次 ( H ,Q)过程积分型泛函作讨论 ,并且得到了它的分布与矩的具体计算公式 。
This text studies the obstacle problems associated with nonhomogeneous elliptic equation, gives the definition of solutions of second order degenerate nonhomogeneous obstacle problems, and making use of the Poincaré inequality and others,acquire some properties of these solutions and their lead number,filling up the blank of an nonhomogeneous obstacle problem research.
本文研究了非齐次椭圆方程的障碍问题,给出了二阶非齐次障碍问题解的定义,利用Poincar啨不等式,获得非齐次障碍问题的解及其导数的一些性质,填补了对非齐次障碍问题研究的空白。
Method of fundamental solutions based on geodesic distance for inhomogeneous heat conduction equations in anisotropic medium;
用测地距离的基本解方法求解非齐次各向异性热传导方程
Inclusion Region of Inhomogeneous Eigenvalue and Its Expansion;
非齐次特征值的包含域及其推广
A special solution formula for nth-order inhomogeneous linear differential equation;
n阶非齐次线性微分方程的一个特解公式
The term "Keeping Equal is not fair" is one of the most important concepts of equity in Chinese traditional culture,which reflects different viewpoints in different views,so as to determine the relevant educational policies.
"维齐非齐"是中国传统文化中一个重要的"公平"概念,也正是这样一个带有歧义的概念,不同时期,不同的理解,赋予它不同的教育取向。
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号