Authors presents an improved segmention technique based on multiple threshold values determined by fuzzy entropy.
为快速准确找到车牌位置 ,提出了一种改进的多阈值模糊熵分割方法 。
Fast two-dimensional Renyi’s entropy threshold method
快速二维Renyi熵阈值分割方法
Improved Relative Entropy-based Thresholding Algorithm for Segmentation
一种基于相对熵阈值分割的改进算法
Maximum Entropy Image Thresholding Based on Two-Dimensional Histogram Oblique Segmentation
二维直方图区域斜分的最大熵阈值分割算法
Fast Recurring Two-dimensional Tsallis-Havrda-Charvat Entropic Thresholding Algorithms
二维Tsallis-Havrda-Charvat熵阈值分割的快速递推算法
Study on Methods of Thresholding Image Segmentation Based on Tsallis Entropy
基于Tsallis熵的阈值图像分割方法研究
Image Thresholding Based on Two-Dimensional Arimoto Entropy
基于二维Arimoto熵的阈值分割方法
Research of improved algorithm for multilevel thresholding image segmentation based on fuzzy maximum entropy
模糊最大熵多阈值分割的改进算法研究
Threshold segmentation based on maximum entropy and MEA
应用最大熵和思维进化算法的阈值分割
Two-dimensional Cross-entropy Linear-type Threshold Segmentation Method for Gray-level Images
灰度图像的二维交叉熵直线型阈值分割法
2D Fuzzy Maximum Entropy Image Threshold Segmentation Method Based on QPSO
基于QPSO的二维模糊最大熵图像阈值分割方法
Image thresholding segmentation based on two-dimensional minimum Tsallis-cross entropy
基于二维最小Tsallis交叉熵的图像阈值分割方法
Multi-threshold Segmentation of Micro Cell Image Based on Maximum Information Entropy;
基于最大信息熵原理的显微细胞图像多阈值分割
Thresholding based on improved 2-D exponential entropy and chaotic particle swarm optimization
基于改进的二维指数熵及混沌粒子群的阈值分割
Fast iterated algorithm based on fuzzy 2-partition entropy for image thresholding
模糊2-划分熵阈值法的快速迭代算法
An method of automatically determine the threshold value of the division fingerprint image segmentation
一种自动确定分割阈值的指纹图像分割方法
A Multi-level and Adaptive Dual Threshold Segmentation Algorithm Base on Evaluation
基于分割评价的多层次自适应双阈值分割算法
The key technology of image discrete is getting threshold.
图像分割的关键性技术是阈值选取。
A New Fast Dynamic Threshold Image Segmentation Algorithm for Fluorescent Flaw Detection
一种新的快速动态阈值图像分割算法
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号