The third part of this paper proved space ap,q,αψ is also self-conjugate on Cn,and then prove it in the same way as to prove it on the unit disk.
Axler猜想当0
We establish some new properties on the unit disk by the definition of two reproducing kernel fuctions.
在再生核理论的基础上,针对特殊的再生核——解析Bergman核与调和Bergman核,分别借助两种再生核的定义讨论它们在单位圆盘上所具有的一些性质,为进一步研究这两种再生核在单位球上的性质提供理论基础。
In this paper, the theoretical properties of some function spaces in the unit disk are studied.
本文主要研究了单位圆盘上一些函数空间的分析性质,主要是以下两个方面,这些结果均推广了已知的结论。
In this paper,we study the convergence of Hilbert-valued Dμ,q function on the unit ball by Rademacher function system and get the Lipschitz condition of Hilbert-valued Dμ,q function,iff(z)=sum from n=1 to ∞ xnzn ∈ Dμ,q,q > (2n)/μ ,we get φ(z)=sum from α≥0 to ∞ ⅡxαⅡzα ∈Lipγ,where 0<μ<1 if n=1 or 0<μ<2 if n>1.
主要研究了单位圆盘上Hilbert值Dμ,q函数,得到了Hilbert值Dμ,q函数的Lipschitz条件,若f(z)=sum from n=1 to ∞ xnzn∈Dμ,q,0<μ<1,q>(2n)/μ,则有φ(z)=sum from n=1 to ∞ⅡxnⅡzn∈Lipγ。
In this paper,we study the convergence of l~2-valued D_(μ,q) function on the unit ball by Rademacher function system and get the convergence of l~2-valued D_(μ,q) function,if f(z)=sum from∞to n=1 x_nz~n∈D_(μ,q) q>(2n)/μ,we get f_ω(z)∈H~∞for almost every {ε_α},where 0<μ<1.
主要研究了单位圆盘上l~2值D_(μ,q)函数,得到了l~2值D_(μ,q)函数的收敛性,若f(z)=sum from n=1 to∞x_nz~n∈D_(μ,q),0<μ<1,q>(2n)/μ,则对几乎所有的{ε_α}有f_ω(z)∈H~∞。
On Julia points of K-quasimeromorphic mappings in the unit circle;
单位圆内K-拟亚纯映射的Julia点
On Borel points of quasimeromorphic mappings in the unit circle;
关于单位圆内拟亚纯映射的Borel点
A type-function and the order on the type-function are defined in the unit circle.
定义了关于单位圆内Taylor级数的型函数和型函数的级,研究了单位圆内无穷级Taylor级数,得到了其关于型函数U(1/1-r)的级与系数之间的几种关系。
This paper presents the proof of the denseness of rational point in unit circle and proves that circumference ratio is irrational number.
给出了单位圆周上有理点的稠密性证明,对圆周率是无理数给出了证明,应用带余除法,给出了分数必可表示为有限小数或无限循环小数的证明,给出了整数的最大公因数性质的证明。
The Hyper Order of Solutions of Higher Order Linear Differential Equations with Analytic Coefficients in the Unit Disc
单位圆内解析系数的高阶线性微分方程解的超级
Several properities of solutions of linear differential equations in the unit disc
单位圆上线性微分方程解的几个性质
In this paper,the existence of commmon Borel point of algebroidal function and its derivatives in the unit disc is proved.
证明了单位圆内代数体函数及其导函数至少存在一个公共Borel点,结果和Valiron在1928年提出的关于亚纯函数及其导数是否存在公共Borel方向这一问题是相关的。
The Properties of Bergman Metric Disk on Unit Disk
单位圆盘上Bergman圆的性质
On the growth of the solution of two-order differential equations in the unit disc
单位圆盘上二阶微分方程解的增长性
The Theoretical Properties of Some Function Spaces in the Unit Disk;
单位圆盘上一些函数空间的分析性质
The Lipschitz Condition of a Hilbert-valued Function on the Unit Ball;
单位圆盘上的一类Hilbert值函数的Lipschitz条件
The Extremal Functions of Analytic Hilbert Spaces over the Unit Disk
单位圆盘上解析Hilbert空间的极值函数
Eigenvalue Estimates of Biharmonic Operate on Unit Disk and Multi Cylinder
单位圆盘与多圆柱上重调和算子的特征值估计
The Convergence of l~2-valued D_(μ,q) Functions on the Unit Ball;
单位圆盘上的l~2值D_(μ,q)函数的收敛性
Some Properties of Analysis Function In The Unit Disc
一类在单位圆盘内解析函数的若干性质
Compact Operators on Weighted Bergman Spaces of the Unit Polydiscs;
单位多圆盘上加权Bergman空间上的紧算子
Compactness of Toeplitz Operators on Weighted Bergman Spaces of the Unit Polydisk;
单位多圆盘上加权Bergman空间上的Toeplitz算子的紧性
The Measure and Analysis of Seed Bounce and Rolling Displacement after Touching Soil on Furrow Opener of Single Disk;
单圆盘开沟器作用下种子触土后弹跳滚动位移的测定与分析
double-action disc harrow
(双列圆盘靶) 双功圆盘靶
ground-working disk blade
切土圆盘刀,耕耘圆盘
Kinematics and Simulation of Single Disc Basecutter of Sugarcane Harvester
甘蔗收割机单圆盘切割器切割运动分析与仿真
Calculation of the acoustic field directivity pattern of flexural vibrating single stepped concentric plate
单台阶同心圆盘辐射声场的指向性计算
Design and experiment on the driving disc of anti-blocking unit for no-tillage planter
免耕播种机驱动圆盘防堵单元体的设计与试验
A CD-ROM is a separate disk that contains lots of information.
一个光盘只读存储器是一个可以容纳大量信息的单独的圆盘。
The Muetiple Values of K-Quasimeromorphic Mapping of the Unit Disk in the Its Filling Disks;
单位圆内K-拟亚纯映射在其充满圆内的重值
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号