China's CO 2 emissions change during 1971-2005 was analyzed by using Kaya identity in combination with the evolution of macroeconomic background.
利用Kaya恒等[式]结合宏观经济背景的变迁,对1971—2005年期间影响中国CO2排放量的因子展开分析。
The paper firstly describes Kaya Identity and its policy implications.
在讨论Kaya恒等[式]及其政策涵义的基础上,利用修改后的Kaya恒等[式]对1971-2005年期间中国的CO2排放进行了无残差分解,并结合宏观经济背景的变迁对从"四五"到"十五"计划期间的排放变化展开详细分析,结果表明经济的快速发展和人口的增长是CO2排放增加的主要驱动因素,能源效率的提高有利于减少CO2排放,而能源结构的低碳化则是降低CO2排放水平的重要战略选择,最后强调指出加快产业结构调整、发展高能效技术以及清洁燃料技术等政策选择不仅能促进"十一五"期间单位GDP能耗降低20%约束性目标的实现,而且也能有效减少中国CO2的排放量,为减缓气候变化做出贡献。
On an identity of primitive function S_p(n);
一个关于原数函数S_p(n)的恒等[式]
An Identity on Brewer Sums;
关于Brewer和的一个有趣恒等[式]
Utilizing identical equation method to construct unit s shape function;
用恒等[式]法构造单元的形函数
The technique about some mathematical identical equation;
关于某些数学恒等[式]的证明技巧
A beautiful identical equation of the vector of the tetrahedrom;
关于四面体的一个向量恒等[式]
Some identities involving the Fibonacci and Chebyshev polynomial;
Fibonacci和Chebyshev多项式的恒等[式]
Four Identities of Jacobi Elliptic Functions;
Jacobi椭圆函数的四个恒等[式]
Lattice path and Vandermonde s convolution identities;
格路与Vandermonde卷积恒等[式]
Then it is supposed that the constraint multipliers are the functions of time and canonical variables, and combination coefficients in the gauge generator are the functions of time, canonical variables and constraint multipliers, the extended canonical Noether identities (ECNI) are deduced.
在约束乘子是 时间和正则变量的函数,以及规范生成元的组合系数为时间、正则变量和约束乘子的函数一般情况下,建立了扩 展正则Noether恒等[式](ECNI)。
Based on the phase-space generating functional for a system with a singular higher-order Lagrangian,the quantal canonical Noether identities under the local and non-local transformation in phase space for such system have been derived.
基于高阶微商奇异拉氏量系统的相空间生成泛函 ,导出了定域和非定域变换下的量子正则Noether恒等[式] ;对高阶微商规范不变系统 ,导出了位形空间中定域和非定域变换下的量子Noether恒等[式] 。
Utilizing the dual basis, Marsden identity under β basis was obtained, based on which conversion formulae between Bernstem basis and β basis were given.
通过组合运算找到β基的对偶基,利用这种对偶基推导幂基函数在β基函数下的Marsden恒等[式]。
By means of dual basis for Said Ball basis of even degree, we obtained Marsden identity and realized the conversion from Bézier curve to Said Ball curve These results are useful for the application of Said Ball curve and its popularization in Computer Aided Geometric Desig
利用任意偶数次Said Ball基的对偶基 ,给出Said Ball基函数下的Marsden恒等[式] ,并实现B啨zier曲线到Said Ball曲线的转换 这些结果对Said Ball曲线在CAGD中的应用及推广是极为有益
Moreover,Marsden identity and its Blossoming form for fractional Bernstein bases are given and the example shows that fractional Bernstein bases are more flexible than integral Bernstein bases.
利用指数为分数的二项式定理,将Bernstein基推广到分数次,发展了分数次Bernstein基,得到了与整数次Bern-stein基许多类似的性质及恒等[式],而这些性质及恒等[式]对于整数次Bernstein基仍成立,并且给出了关于分数次Bernstein基的Marsden恒等[式]及Blossoming形式。
The state-space representations of the Bezout identity for generalized systems proposed by [1](Wang and Balas ,1989) are discussed again.
本文讨论了广义系统Bezout恒等[式]的状态空间实现问题,用更为简明的方式表述和证明了Wang和Balas给出的结果,并分析了Wang和Balas 结果的物理意义。
By using trace identity, the generalized Hamiltonian structure is given.
进一步由迹恒等[式]得到其广义 Hamilton结构并且证明是 Liouville可积的 。
The Hamilton structure of the hierarchy with t he trace identity is obtained.
引入了一个新的离散的等谱特征值问题 ,导出了相应的晶格孤子方程族 ,利用迹恒等[式]导出了Hamilton系统族 ,并证明是Liouville可积
By using the trace identity, biHamiltonian structures of a family of equations are given, moreover, it is shown that this hierarchy is integrable in the Liouville′s sense.
利用迹恒等[式],研究了一个具有双哈密顿结构的方程族,并且证明了它是Liouville可积的。
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号