Numbers of constitutes and nonzero entries of maximal S~2NS matrices;
极大S~2NS阵的分支数与非零元个数
In this paper, we discuss the 2-harmonic spacelike submanifolds in a locally symmetric and conformally flat pseudo-riemannian manifold and get two sufficient conditions under which Mn turns into a maximal submanifold,and the results in [2] are improved.
讨论局部对称共形平坦伪黎曼流形的2-调和类空子流形,得到这类子流形成为极大的二个充分条件,推广了文[2]中的结论。
A matrix A is called a maximal S2NS matrix, if A is an S2NS matrix, but each matrix obtained from A by replacing one zero entry by a nonzero entry is not a S2NS matrix.
若A是S2NS阵且A中任意一个零元换为任意非零元后所得的矩阵都不是S2NS阵,则称A是极大S2NS阵。
The study of methods for maximum near optimal solution of m×n permutation schedule problems;
同顺序m×n排序问题极大值近似最优解解法的探讨
Noise-suppressing image fusion based on module maximum and correlation;
基于模极大值和相关性的图像噪声抑制融合算法
The accurate time when the cutter is worn or broken can be detected by the module maximum point in wavelet transformation results, and the state of cutter's wear can be shown by the value of singular index.
利用小波变换对切削力信号进行分析 ,变换结果的模极大值点反映了刀具发生磨损或破损的时刻 ,而其奇异性指数的大小则反映了刀具的磨损状况。
The singular value decomposition of wavelet transformation module maximum value matrix is proposed.
提出了基于小波变换模极大值矩阵奇异值分解的方法,用该方法获得的奇异值特征矢量作为信号的特征可以压缩特征维数,而且更容易进行计算机自动识别,同时还具有时间平移不变性的突出优点。
Application of wavelet modulus maximum method in denoising processing of oscillo-graphic chronopotentiometric signal;
小波模极大值滤噪法在示波计时电位信号处理中的应用
The application of wavelet transformation modulus maximum technique to the signal extraction;
小波变换模极大值在诱发脑电提取中的应用
A Method based on fast lifting wavelet transform and modulus maximum for detecting power system singular signals;
基于快速提升小波变换的电能畸变信号模极大值检测方法
A maximum method for measuring surface tension coefficient;
极大值法测量表面张力系数
A discussion on the maximum positions of a function and its transform;
关于分布函数极大值位置的讨论
There are the minimum and the maximum of ionicity of weak acid and weak base.
在化学教学中,涉及到弱酸和弱碱的电离度,弱酸和弱碱的电离度存在极小值和极大值,用稀释定律求算电离度会引起的一定的误差。
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号