This article proves that in the homomorphism of G onto ■,the inverse image of a maximal normal subgroup in ■ is also a maximal normal subgroup in G.
本文得到了在同态满射下,极大正规子群的逆象也是极大正规子群,并给出了极大正规子群的象也是极大正规子群的一些等价条件。
A problem,maximal normal subgroups of Mgroups are also M-groups,was studied by introducing the concept of M-pairs.
通过引入M-对的概念,研究了一个M-群的极大正规子群何时也是M-群的问题,特别是证明了一个强M-群的每个极大正规子群均为M-群。
It is proved that S(G) is the product of the simple normal subgroups of the group G,and R(G) is the joint of the maximal normal subgroups of the group G.
设S(G)是群G的所有本质子群的交,R(G)是群G的所有多余子群的积,证明S(G)是G的所有单的正规子群的积,R(G)是G的所有极大正规子群的交。
The concept of a special normal operator, self-conjugate operator, in Hilbert space was extended to a polynomial conjugate operator.
将Hilbert空间上特殊的正规算子———自共轭算子的概念推广到多项式共轭算子。
The properties of the operator and the necessary and sufficient conditions for the regular value to exist were studied using the concept and properties of normal operators in Hilbert space, the spectrum mapping principle and analogy.
应用希尔伯特空间上正规算子的概念、性质、谱映射定理和类推的方法,研究了该类算子的性质及正则值存在的充要条件。
The properties of the polynomial conjugate operator and the necessary and sufficient conditions for the regular valve to exist are studied by using spectral decomposition and properties of normal operator in Hilbert space.
应用希尔伯特空间上正规算子的概念,性质和谱分解定理,研究了多项式共轭算子的性质及正则值存在的充要条件。
Boundedness of maximal operators in Morrey-type spaces on homogeneous spaces;
齐型空间上Morrey型空间中极大算子的有界特征
V∫_(-1)~1 f(x-γ(t))(dt/t) and the maximal operator M is defined by: Mf(x)=■(1/h)|∫_0~h f[x-γ(t)]dt| For the approximately homogeneous curve γ,the author proves that both H and M are bounded on L~P (R~n),p>1.
∫_(-1)~1f(x—γ(t))(dt/t)相应的极大算子 M 定义为Mf(x)=■(1/h)|∫_0~h f(x—γ(t))dt|对近似齐次曲线γ,我们证得 H 和 M 都在 L~p(R~n)上有界,p>1。
In this paper,we discuss the boundeness of the commutator of the maximal operator.
在齐型空间上Herz空间中,通过范数概念定义了相应的有界平均震荡函数,进而利用调和分析中相关理论讨论了极大算子交换子的有界性,并给出具体证明过程,从而推广了该理论体系。
Image and Inverse Image of a Maximal Normal Subgroup in the Homomorphism;
同态满射下极大正规子群的象与逆象
THE e-PAIRS FOR MAXIMAL SUBGROUPS AND C-NORMAL SUBGROUPS;
有限群极大子群θ-子群偶与C-正规子群
Afinite group when its sylow groups s maximal subgroups are m-normal;
sylow子群的极大子群都在G内m-正规的有限群
The Influence of θ-Pairs for Maximal Subgroups and Semi-normal on the Structure of Finite Groups
极大子群的θ-偶、半正规对群结构的影响
The maximal regular subsemigroups of singular order-preserving transformation semigroups
奇异保序变换半群的极大正则子半群
The Influence of Minimal Weakly c-normal Subgroup on the Structure of Finite Group;
极小弱c-正规子群对有限群结构的影响
Influences of the Centralier and S-Normality of a Minimal Subgroup on the Structure of a Finite Group;
极小子群的中心化子及s正规性对群结构的影响
The Deskins Maximal Completions and Complemented Subgroups of Finite Groups;
有限群极大子群的Deskins完备与补子群
The Normalizer of Hall Subgroups and the Structure of Finite Groups
Hall-子群的正规化子与有限群结构
Automorphisms of the Maximal Unipotent Subgroups of Ree Group and Suzuki Group;
Ree群、Suzuki群的极大幺幂子群的自同构
Non-metacyclic p-groups All of Whose Maximal Subgroups are Minimal Non-abelian
极大子群都是极小非交换群的非亚循环p-群
A Theorem On Maximal Subgroups of Sylow Subgroups;
关于Sylow子群的极大子群的一个定理
The Influence of C-normality and θ-pairs of Subgroups on the Structure of Finite Groups;
子群的C-正规性、θ-子群偶对有限群结构的影响
The Influence of c~*-normal Subgroups and H-Subgroups on the Structure of Finite Groups
c~*-正规子群和H-子群对有限群结构的影响
The Influence of Normal Index and S-normality of Subgroups on the Structure of Finite Groups;
子群的正规指数、子群的S-正规性对有限群结构的影响
The Influence of Normal Properties and θ-pairs of Subgroups on Groups;
子群的正规性质及θ-偶对群的影响
The Influence of C~*-Normal Subgroups on the Structure of Finite Groups;
子群的C~*-正规性对有限群结构的影响
The Influence of Conditional C-normal Subgroups on the Structure of Finite Groupst;
条件c-正规子群对有限群结构的影响
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号