Circumscription is one of nonmonotonic logics based on the minimal models.
限制是一种基于极小化模型的非单调逻辑,本文首先提出一种相对限制形式——基于极大化模型的限制,继而给出结合极小与极大化模型的复合限制形式,并进一步讨论它们在形式化机器学习中归纳推理的应用。
:This paper first introduces the definition of multiobjective minimization models (VOP) about noninferior solution ,weak noninferior solution and absolute optimal solution. Relationship of these solution are discussed and corresponding conclusion are given
本文在一般多目标极小化模型 (VOP ) 非劣解、弱非劣解和绝对最优解的定义基础上, 结合相关引理,讨论了这些解之间的关系,并得出了相应的结论。
Remark on isoparametric minimal hypersurfaces of S~(n+1);
关于S~(n+1)中极小等参超曲面的注记
This paper,using Laplace operator,Green integral and manifold toplogy,by pinching method and technique,studies conharmonicly flat totally real minimal submanifolds M in CP4.
运用拉氏算子、格林积分和流形拓扑,根据Pinching方法和技巧研究CP4中调和平坦的全实极小子流形M,得到M体积的下确界以及取得下确界的充要条件。
In this paper,We study quasi-conformably flat totally real minimal submanifolds M in CP4.
研究CP4中拟共形平坦的全实极小子流形M,得到M体积的下确界以及取得下确界的充要条件,还有其特例——共圆平坦情形的全部对应结果。
Hlder Continuity and Minimum for Free Discontinuity Problems;
Hlder连续性与自由不连续问题的极小
There are many near optimal methods for solving m×n permutation schedule problems and in general that is to get minimum maximum flow time.
同顺序m×n排序问题通常是求极小最大流程时间,而且近似最优解解法比较多。
Local Boundedness of Minimizers of Functionals Involving Anisotropic Growth Conditions;
各向异性泛函极小的局部有界性
It is proved that the unconstrained minimizers for the p(x)-Laplacian integral functionals satisfying some natural conditions must possess radial symmetry.
证明了在自然条件下p(x)-Laplace积分泛函的无约束极小必具径向对称性,推广了Lopes在p=2时的一个相应的结
It is proved that the unconstrained minimizers and the constrained minimizers for the p-Laplacian integral functionals satisfying some natural conditions must possess radial symmetry.
证明了在自然条件下 p- Laplace积分泛函的无约束极小和约束极小必具径向对称性 ,推广了 Lopes在 p =2时的相应结果 。
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号