The algorithm about incremental generating decision function is built by modifying the definition of discernibility matrixes.
笔者提出的递增式决策函数生成算法是在改造后的分辨矩阵下完成的,更有利于编程实现;避免了传统粗集方法对数据作一次性处理生成庞大的决策矩阵,从而有效解决了在处理大规模数据库时内存不足问题;由于决策函数是递增式生成的,因此该算法适应了目前数据变化的特点,实现了新例的动态学习,因此这种对信息的重用,减少了数据挖掘的时间;同时,递增式决策函数生成算法从根本上解决了多类决策的递增式学习问题。
The basic concepts,principles,logic flowchart of algorithm,characteristics of the competitive decision algorithm were systemically expounded and the widely used competitive force function,decision functions, resources exchange rules of the algorithm were proposed.
全面阐述竞争决策算法的基本概念、原理、算法流程、特点,给出了常用的竞争力函数、决策函数、初始状态、资源交换规则,并以示例来说明该算法的原理、特点及应用。
This paper transfers the non-parametric hypothesis test of two or more equal population into the statistical decision problems which be reseaching the best decision functions.
本文将两总体及多总体分布相等的非参数假设检验问题转化为寻求最优决策函数的统计决策问题。
Thus the associated matrix is formed between the project and the object,and accordingly educed expressions of evaluative function and decision-making function.
基于Vague集的模糊决策方法近年来得到了广泛的应用,这种决策方法综合考虑了方案满足目标的可能性和不满足目标的可能性两个方面的因素,以此为基础建立方案和目标之间的关联矩阵,从而利用i-vVague集导出了评价函数和决策函数的表达式,并且可以根据不同的情况选择不同的决策函数。
Simultaneously,it established a mathematical model of Multi-sensor,then obtained analytical expressions of decision-making function.
基于Vague集的模糊决策方法近年来得到了广泛的应用,它以方案满足目标的可能性和不可能性为基础,进而建立方案和目标之间的关联矩阵;该方法克服了传统方式下利用模糊集的固有局限性,同时针对多传感器信息融合的数学模型,得出决策函数的具体表达式,并且给出结果的判决准则,最后通过实例分析证明这种方法简单有效。
In this paper, the characteristic of decision-making functional spaces is discussed.
就决策函数空间的特性进行讨论,指出任何统计决策问题总是与一个随机过程有关的,所有统计决策函数所构成的集合可以看作是一个拓扑空间。
We propose a new construct method of multicriteria decision functions based on genetic programming algorithm,which produces more stable decision functions than the AHP arithmetic mean used ones.
提出了一种基于遗传程序设计算法(GPA)构造多准则决策函数新方法,该方法构造的决策函数比典型的分层处理AHP(算术平均值)方法构造的决策函具有明显的稳定性。
With the aid of computer algebraic system and symbolic computation,are obtained some explicit and exact solutions of a(2+1)-dimensional nonlinear integrable generalization of the Kaup equation by the truncated adjunct function method,involving periodic solutions and solitary wave solutions.
应用截尾辅助函数法,借助计算机代数系统与符号计算,获得(2+1)维非线性耦合可积广义Kaup方程若干显式精确解,其中包含周期解和孤立波解。
Moreover, other commonly used split decision functions are analyzed.
也分析比较了其他一些常用的剖分决策函数。
The Compactness of Decision-making Functional Spaces Based on the Sense of Regular Convergence
基于正则收敛意义下决策函数空间的紧致性
The grey number decision making based on TOPSIS and subordinate function;
基于TOPSIS和隶属函数的灰数决策模型
The Application of EXCEL Finance Function in the Policy Decision of Long-Term Investment;
长期投资决策中EXCEL财务函数的应用
Risk Dicision-making of Thermal Power Plant Investment Based on Utility Function;
基于效用函数的火电厂投资风险决策
Score Functions for Decision Tree Models;
关于决策树分类模型的评分函数研究
Study on the Value Function of MADM in Mining System;
采矿系统多目标决策的价值函数研究
Research on the Process of Group Decision Making Based on Confidence Belief Functions
基于置信信念函数的群决策过程研究
Risky Investment Decision Based on Non-expected Utility
基于非期望效用函数的投资决策研究
No constructor could take the source type, or constructor overload resolution was ambiguous
无构造函数可以接受源类型,或构造函数重载决策不明确
Elasticity Calculation of Functions and Its Application in Cost Decisions
函数弹性计算公式及在价格决策中的应用
A Class of Multi-objective Decision-making Analysis With True and False Function;
一类目标函数为肯否定属性的多目标决策分析
Study on Input-output Cost Function Based Product Mix Decision-making;
基于投入产出成本函数的产品组合决策研究
Research on a Collective Utility Function Which Illustrates Justice of Group Decision;
一种反映群体决策公平性的群体效用函数研究
Goal-Programming Model based on the Utility Function of the Decision- Maker;
基于决策者效用函数上的目标规划模型
A control and optimization decision method based on agricultural production functions;
基于农业生产函数的控制与优化决策方法
The Study of Short-Run Cost Function and its Application in The Decision of Enterprise Management;
短期成本函数在企业管理决策中的应用
The graphite morphologies were identified by using correlated functions and the decision tree method.
应用关联函数及决策树方法对石墨形态进行判别。
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号