An asymptotic expansion formula of Sikkema operators on the simplex;
单纯形上Sikkema算子的一种渐近展开公式
By introducing extended variables and using the theory of differential inequality,the uniformly effective asymptotic expansion is obtained under appropriate conditions.
文中揭示了其解呈现双重层性质,即奇摄动问题的解在该区域内呈现不同“厚度”的初始层性质;在适当的假设条件下,通过引进不同量级的伸长变量,构造不同“厚度”的初始层校正项,并利用微分不等式理论,得到了解的任意次近似的一致有效的渐近展开式。
The asymptotic expansion term of remainder term for error of inequality distance first kind cubic spline interpolating function is advanced using interpolation method for basic spline.
利用基样条插值方法,给出非等距三次样条(Ⅰ)型插值函数余项渐近展开式。
For the elliptic partial differential equations of variable coefficient,we obtain the product theorem of asymptotic expansions of energy integral as follows:B(w,v_h)=∑ni=1h~(2i)_e∫_ΩF_i(D~(2i-2)_x(v_(xx)φ))v_hdxdy+∑nj=1k~(2j)_e∫_ΩG_j(D~(2j-2)_y(u_(yy)φ))u_hdxdy+∑ni+j=2h~(2i)_ek~(2j)_e∫_Ω[F_(ij)(D~(2i-2)_xD~(2j)_y(u_(xx)φ))+G_(ij)(D~(2i)_xD~(2j-2)_y(u_(yy)φ))]v_hdxdy+R_(n,h).
针对变系数椭圆型方程矩形元,证明了能量积分的渐近展开具有如下的乘积定理:∫Ω∫Ωk2jh2iFi(D2i-2Gj(D2j-2B(w,uh)=∑ny(uyyφ))vhdxdy+ex(uxxφ))vhdxdy+∑nei=1j=1∫Ω∑nh2i[Fij(D2i-2eek2jxD2j-2y(uyyφ))]vhdxdy+Rn,h。
An analysis of asymptotic expansions of iterated Galerkin methods for eigenvalue problems of the second kind Fredholm integral equations is presented.
讨论了第二类 Fredholm积分方程特征值问题迭代 Galerkin方法的渐近展开 ,并在此基础上分析了Richardson外推方法。
In this paper,we obtained item-by-item asymptotic expansions of two kind quadratic spline interpolation.
本文给出了二次样条在两类端点条件下插值误差的逐项渐近展开结果,从而获得插值误差关于步长h的级数表示式。
Some solutions of effectively asymptotic expansions are studied in this paper which would use powerful symbolic operation and control sentence provided by Mathematica system to a weakly nonlinear system ü+w 2 ou=εf(u,·u),and some of automatically solving problems of Lindstedt Poincare s method are considered,such as method of classially singular pertubations.
应用Mathematica系统的强大的符号运算功能以及该系统提供的控制语句 ,对一类弱非线性系统櫣 +w20 u =εf(u ,·u)的有效渐近展开式解进行了研究 ,用Mathematica系统实现了一种古典的奇异摄动方法—LindstedtPoincare方法的自动求解问题 ,并调试通过程序做成了程序
Integral Solutions to the Second-Order Linear Equations and the Solution of Asymptotic Expansion;
一类二阶线性方程的积分解与解的渐近展开式
Edgeworth Expansions and Power Loss of Tests
检验的渐近展开和功效损失(英文)
a step - by - step, programmatic approach to problem solving.
解决问题的循序渐进的有计划的展开
The story gradually unfolded itself.
故事 (的情节) 渐渐地展开。
Asymptotic behavior of solutions for an abstract evolution equation with fading memory
带衰退记忆的抽象发展方程解的渐近性
Asymptotic Behaviors of Solutions to a Evolution p-Laplacian Equation in Arbitrary Dimensions
一类任意维数的p-Laplacian发展方程解的渐近性质
The Existence and Asymptotic Property of the Solutions for Some Nonlinear Evolution Equations;
某些非线性发展方程的整体解及其渐近性
Asymptotic expansion of k-th finite element solution for two-point boundary value problem;
两点边值问题k次有限元解的渐近展式
Using the perturbation theory and perturbative method, the uniformly valid asymptotic expansions of the solution for a class of ENSO model are obtained easily.
利用摄动理论和方法,较简便地得到了一类ENSO模型解的一致有效的渐近展开式.
Asymptotic Behavior of Solutions for Ginzburg-Landau Equation;
Ginzburg-Landau方程解的渐近性
Edgeworth expansion of random weighting estimation in semi-parametric regression model
半参数回归模型随机加权估计的渐近展开
Study on the approximate deployment theory of the reducible elbow pipe in the sheet metal process
钣金工艺中渐缩管弯头的近似展开理论研究
Asymptotic Expansions of Iterated Galerkin Methods for Eigenvalue Problem of Fredholm Integral Equations;
Fredholm积分方程特征值迭代Galerkin方法的渐近展开(英文)
An Asymptotic Expansion for Quasi-liner Singular Perturbation Problem of Hyperbolic-Parabolic Partial Differential Equation
双曲-抛物奇异摄动问题的O(ε~n)阶渐近展开
Structure topological optimization design with displacement constraints based on the approximation of moving asymptotes
基于移动渐近线展开式的结构位移拓扑优化
Multiscale Asymptotic Expansion and Finite Element Methods for Periodic Composite Materials Hyperbolic Type Wave Problems;
周期复合材料双曲型波动问题多尺度渐近展开和有限元解法
A Finite Difference Scheme for Singularly Perturbed Problems by Incorporation of Asymptotic Approsimations;
渐近展开法与差分格式相匹配求解奇异摄动问题
Spur gear axial modification and approximate calculation of involute rolling length
直齿圆柱齿轮齿向修形及渐开线展开长度的近似计算
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号