The definition of truth degree in the classic two-valued proposition logic formula is populared to the uneven probability space whose power is 2,and two-valued logic(p,q) measure and its proposition probability truth degree are defined.
将经典二值命题逻辑中公式的真度概念推广到势为2的概率空间上,定义了二值逻辑(p,q)测度和其上命题的概率真度;在〔1/3,2/3〕的情形下证明了全体公式的概率真度之集在[0,1]中是稠密的,并给出了公式概率真度的表达通式。
Aiming at the problem that there exists very complicated and a large amount of component constraints,an algorithm of component constraint detection based on proposition logic was proposed,in which the proposition in daily diction was transformed into the formal proposition of mathematical logic via the process of proposition symbolization,i.
针对组件约束数量大、复杂度高的问题,提出了一种基于命题逻辑的组件约束检测算法。
In the viewpoint of proposition logic and based on extension theory,a new method for proposition representation is proposed.
从命题逻辑的角度 ,以可拓论为基础 ,建立了命题表示的一种新方法 ,提出了物元命题、事元命题和事物元命题的概念 ;指出物元命题与关于对象的陈述型命题相对应 ,事元命题和事物元命题与关于行为、事件的行为型命题相对应 ;探讨了命题的可拓性和可拓变换方法 ;给出了基于可拓集合的命题可拓集的概念 。
The highest level logic,or rather,the second level logic deals with logical connection proposition which is the highest grade proposition.
同时互逆主义逻辑的多层逻辑思想揭示了各类命题之间的内在关系,最高层即二层逻辑主要用于处理最高级别的逻辑命题,这是经典逻辑所不具备的功能。
In other words, the logical connection proposition is composed of empirical mathematical connection propositions and the connective.
命题又可分为不同的层次,高层命题由低层命题构成,即逻辑命题由经数命题加联符构成,经数命题由事实命题加联符构成,事实命题由项构成。
The Generalized Tautology in Disturbing Fuzzy Propositional Logic System;
扰动模糊命题逻辑系统中的广义重言式
Tense operators E(ever)and F(will)as well as their dual operators H(ever always be) and G(will always be) were introduced into lattice-valued propositional logic system LP(X), forming a lattice-valued tense propositional logic system LTP(X).
在格值命题逻辑系统LP(X)中引入时态算子E(曾经)和F(将会)以及它们的对偶算子H(曾经总是)和G(将会总是),建立了一个以时轴为语境的格值时态命题逻辑系统LTP(X)。
Probability Truth Degree of Multi-valued Propositional Logic and Intuitionistic Fuzzy Propositional Logic System;
多值命题逻辑和直觉模糊命题逻辑公式的概率α-真度
The Study of the Integrated Resemblance Degrees and the Distance in the Propositional Logic Systems;
命题逻辑公式的相似度与距离之研究
Similarity Degree, Pseudo-metric and Approximate Reasoning in Propositional Logic System;
命题逻辑公式集上的相似度、伪距离与近似推理
D-Stochastic Truth Degree of Formulas Based on Standardized Representation in Propositional Logic
基于标准化表示的命题逻辑公式的D-随机真度
Regular Similarity Relation on F(S) in Propositional Logic and an New Triple-I Method of Fuzzy Reasoning;
命题逻辑公式集上的正则相似关系和一种新型的三I算法
Probability Truth Degree of Two Fuzzy Propositional Logic Systems;
两种模糊命题逻辑的公式的概率真度
On Probability Truth Degree of Propositions in Two-valued Logic;
二值命题逻辑中公式的一种概率真度
Provable degree of formula on theories in the propositional fuzzy logic system Gd;
命题模糊逻辑系统Gd中公式的理论可证度
Absolute truth degree theory of formulas in n-valued Lukasiewicz propositional logic system;
n值Lukasiewicz命题逻辑系统中公式的绝对真度理论
The Theory of RelativeΓ-tautology Degree of Formulas in Four Propositional Logics;
四种命题逻辑中公式的相对Γ-重言度理论
Theory of Syntatic Truth Degree in Two Value Propositional Logic System
二值命题逻辑系统中公式的语构真度理论
The Γ-rand Truth Degree of Fomulas and Approximate Reasoning in Classical Propositional Logic
经典命题逻辑中公式的Γ-随机真度与近似推理
Conditional probability truth degree of formulas in continuous value propositional logic system
连续值命题逻辑系统中公式的条件概率真度
Theory of Reliable Truth Degree in ヒukasiewicz 3-valued Logic System
ヒukasiewicz三值命题逻辑中公式的可靠真度理论
The Further Study of Formula's Truth Degree under n-value Proposition Logic System
n值命题逻辑系统中公式真度的进一步研究
Comparison between the Classical Propositional and the Propositional Modal Systems
古典命题逻辑与模态命题逻辑的形式系统之比较
Interval-Valued Fuzzy Propositional Logic and Its Generalized Tautology;
区间值模糊命题逻辑及其广义重言式
Modificatory Atanassov Logical and Its Generalized Tautology;
修正的Atanassov命题逻辑及其广义重言式
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号