Schrodinger equationiut-uxx+c(t)u=0u(t,0)=u(t,2π)=0(A),u(t,x)=∑∞n=1qn(t)n(x),n(x) is a eigenfunction to eigenvalue λn in y″+λy=0y(0)=y(2π)=0,c(t)=a+εc1(t), which a is a constant,c1(t) is a quasiperiodic function with frequencies ω.
n(x)是特征方程y″+λy=0y(0)=y(2π)=0中特征值对应的特征函数,c(t)=a+εc1(t),其中a是常数,c1(t)是以ω为频率的拟周期函数。
In this paper,periodic function fitting and wavelet transform are applied to degrade the periodic noise respectively.
首先用周期函数拟合和小波变换两种方法分别对随机漂移中的周期噪声进行分析和处理;然后对相关噪声建立高阶AR模型;最后将该模型应用在GPS/INS组合导航Kalman滤波中,并对结果进行分析和比较。
Some conclusions on periodic function;
关于周期函数的一些结果
By constructing periodic function, the periodic demand of Fourier transformation will be meeted.
该方法通过构造周期函数,满足了频域法中进行Fourier变换的周期性条件,从而克服了经典频域三点法中直线形状误差的非封闭性、非周期性以及端点的不连续而引起的高阶谐波分量失真等边缘效应。
We mainly use the Brouwer s theorem getting sufficient conditions for the existence of a unique asyptotically stable periodic solution to two competition species when the intrinsic growth rates are periodic functions of time.
利用不动点定理得到了两竞争物种当自然增长率为t的周期函数时唯一、稳定的正周期解存在的充分条
Under a first integral curve is genus 1,the period function of quadratic reversible systems is monotonious,through the research on the monotonicity of the period function of a class of quadratic reversible systems,by the use of the Picard-Fuchs equation method in this paper.
利用Picard-Fuchs方程,研究了一类二次可逆系统周期函数的单调性问题,获得了在首次积分曲线是亏格1时的二次可逆系统周期函数单调的结论。
This thesis of Master is composed of four chapters,which mainly studies several kinds of the second order nonlinear differential equations about the oscillatory and asymptotic behavior of solutions,the existence of limit cycles and the period function of a center.
本硕士论文由四章组成,主要讨论了几类二阶非线性微分方程解的振动性与渐近性,极限环的存在性以及中心的周期函数的单调性。
Firstly,the period function can be written as T(ρ,ε)=2π+(?)T_i(ρ)ε~i,andthen the formulas for T_i(ρ) is given.
讨论了一类平面多项式系统的周期函数的临界周期的个数。
This paper is intended to make a systematic study of periodic functions and to popularize them in teaching and learning.
周期函数的周期性是中学数学中的教学内容,掌握了函数的周期性,对函数性质的研究会带来不少方便。
This paper studies the relation between submultiple periodic functions and periodic functions.
研究了因子周期函数与周期函数的关系,通过分析构建了因子周期函数与周期函数的一一对应关系。
Probed into cycle function and cycle properties of the sum,the difference,the product and the quotient of it;
对周期函数及其和、差、积、商函数周期性的探讨
The Relationship of Pseudo Almost Periodic Function and Pseudo Almost Periodic Function Sequence;
伪概周期函数和伪概周期序列的关系
Also Talk about the Existence of Minimal Positive Period in Periodic Function;
也谈周期函数的最小正周期的存在性
A Numerical Differentiation Method for Period Function with Noisy Data
一种带噪声的周期函数数值微分方法
By using properties of scalar almost periodic function, properties of uniform almost periodic matrix function are discussed.
利用纯量概周期函数性质讨论了一致概周期矩阵函数的一些性质。
Studied periodic function and its least positive period.
研究了周期函数及其最小正周期的若干问题。
HIGHER ORDER BIFURCATION OF CRITICAL PERIODS FROM A PLANAR POLYNOMIAL SYSTEM
一类平面多项式的周期函数的高阶临界周期
On the 2-periodic(0,δ~m)Trigonometric Interpolation Problem of Antiperiodic Function
反周期函数的2-周期(0,δ~m)三角插值的收敛性
A periodic function, finite Fourier series, is used to activate the actuator for obtaining training samples.
用周期函数,有限项傅立叶级数,作为激励函数来获取训练样本。
The Number of Critical Periods for a Planar Polynomial System
一类平面多项式系统的周期函数的临界周期个数
Convergence of Antiperiodic [0,P[(1/2h)δ]] Trigonometric Interpolation for Odd Equidistant Nodes
奇数个结点上反周期函数的2-周期[0,P[(1/2h)δ]]三角插值收敛性
the sum of a series of trigonometric expressions; used in the analysis of periodic functions.
三角表达式级数之和,用在周期函数分析上。
The Number of Critical Periods for a Planar Polynomial Systems
一类平面多项式系统的周期函数的临界点个数
analysis of a periodic function into a sum of simple sinusoidal components.
周期函数解成简单正弦曲线之和的分析。
Uniformly Besicovitch Almost Periodic Functions and Their Applications to Differential Equations;
一致Besicovitch概周期函数及其在微分方程中的应用
Almost Periodic Type Functions and Solutions of Almost Periodic Type Differential Equations;
概周期型函数和概周期型微分方程的解
The Periodic Solutions Expressed in Terms of Jacobian Functions for Drinfeld-Sokolov Equations;
Drinfeld-Sokolov方程组的Jacobi函数周期解
Judgement and use of function symmetry and periodicity;
关于函数对称性、周期性的判定与应用
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号