Let p>q and q be an odd number,We discuss the condition of no positive integer solution for the Generalized Fermat equation x~p+y~q=z~q.
当p>q,且q为奇数时,探讨广义Fermat方程xp+yq=zq无正整数解的条件,并提出一个猜想。
By the resolution of a mathematical problem,this paper carries out a further research of using property of the even number and odd numbers to get the relevant theorem of resolve this problem,and explain concrete application by an example.
通过一个数学问题的解决,由此提出了进一步研究的问题,利用奇数与偶数的有关性质,得到了解决这一类问题的有关定理,并且通过例子说明了定理的具体应用。
Here r is not a negative whole number,h,x are odd numbers and h>0 .
断定,当n=2r+1 -1时,若{x+1}2 =m,那么对于s(x) =∑ni=0xi就有{s(x)2 } =m+r成立,此处r是非负整数,x≠±1;当n=2r+1h-1时,若{x+1}2 =m,那么对于s(x) =∑nxi就有{s(x) } =m+r成立,此处r是非负整数,h,x为奇数,且h>0。
1, 3, 5, 7, etc., are odd.
1,3,5,7 等是奇数。
Having an uneven number of toes.
奇蹄的有奇数个脚趾的
1, 3, 5 and 7 are odd numbers.
1、 3、 5、 7是奇数.
1,3 and 5 are odd numbers.
一、三和五是奇数。
Odd pages: Books pages bearing odd folio numbers. For books open by the righ, these pages are the right-hand pages.
奇数页:带有单数页码的书页。从右翻开的书,奇数页在右边
(mathematics) a relation between a pair of integers: if both integers are odd or both are even they have the same parity; if one is odd and the other is even they have different parity.
整数对之间的关系:如果同是奇数或偶数,则奇偶性相同。
Designating an integer not divisible by two, such as1, 3, and5.
奇数的不能被2整除的整数,如1,3和
Rounds a number up to the nearest odd integer
将正(负)数向上(下)舍入到最接近的奇数
Recto: Book pages bearing odd page numbers.
奇数页:带有单数页码的书页。
Separates the odd and even scanlines of a video clip.
分开奇数和偶数视频片段的扫描行.
Designating an integer not divisible by two, such as1,3, and5.
奇数的不能被2整除的整数,如1,3和5
Numerical Simulation of Forming Process on Odd Number Side Hollow Drill Steel;
奇数边中空钎钢成型过程的数值模拟
Variety Number of Natural Number Reduction to Sum of Consecutive Odd Numbers;
自然数分拆成若干个连续奇数之和的分拆种数
odd permutation
【数】奇排列, 奇置换
They had an infinity of adventures.
他们经历了无数奇景。
even-odd predom index
正构烷烃偶奇优势指数
even parity check
偶数奇偶[同位]校验
Further discussion on Fibonacci sequence;
再论菲波纳奇(Fibonacci)数列
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号