Let N=q_1q_2q_3,q_1<q_2<q_3 be a 3 factors Carmicheal number,define C_(3,1)-and C_(3,2)-numbers,they respectively mean q_i=5 mod 8,i=1,2,3,and q_i≡5 mod 8,i=1,2,q_3≡9 mod 16,they also have a higher probability to be the strong pseudoprimes.
令N=q1q2q3,q1
An algorithm is given,Using this algorithm can find out some numbers which are both Carmichael numbers and strong pseudoprimes to some prescribed bases.
对含有三个素因子的Carmichael数给出一种算法,利用此算法能探求一些Carmichael数,它们同时又是对一系列指定底的强伪素
(Department of Mathematics, Anhui Normal University, Wuhu 241000)Abstract: Define ψ_m to be the smallest strong pseudoprimes to all the first m prime bases.
定义ψ_m是关于前m个素数基的最小强伪素数。
Let Τ be Φ strongly pseudocontractive mapping.
证明当Τ是Q一致光滑Banach空间Ε的有界闭凸子集到自身的Φ强伪压缩映象时,Ishikawa迭代法强收敛到Τ的唯一不动点。