This paper gives another form of item-by-item differential theorem of function series.
给出了函数项级数逐项微分定理的另外一种形式 ,它将原来定理中的条件大大减弱 ,结果加强 。
A simple and easy proof for Lebesgue differential theorem;
简证Lebesgue微分定理
In the paper stated here,Hausdorff convergence is introduced to discuss the differentiable sphere theorem with positive Ricci curvature.
利用Hausdorff收敛讨论了具有正Ricci曲率流形上的一个微分球定理,最后得到了一个流形上的刚性现象。
About "the Paradox of applicatation of differential mean value theorem";
关于“微分中值定理应用中的一个悖论”
The problem of the number of the "mean points"in Differential mean value Theorem
微分中值定理“中值点”探讨
The discussion on teaching of the differential mean value theorem
微分中值定理的教学研究
Some studies for teaching differential mean-value theorems;
微分中值定理教学改革探讨
The relations in differential mean-value theorems are studied based on geometrical meaning and global point of view in this paper.
从几何直观出发,立足于整体角度,研究微分中值定理之间的关系,讨论R o lle定理、L agrange定理、C auchy定理统一于微分学中值定理的各种形式;并以R o lle定理为基础,借助不同形式的辅助函数对其它微分中值定理作出多种形式的统一证明。
Tang Ren-xian has given series expression of differential mean-value theorems to real functions.
在唐仁献已经给出了有关实函数的微分中值定理的级数表达式的基础上,文章给出解析函数的微分中值定理的级数表达式,并进一步推广到共轭解析函数上。
By softening the terms of differential mean-value theorem,two theoremes are derived,which can be applied more widely than mean-value theorem.
通过对微分中值定理条件的放宽 ,从而形成了比中值定理应用更广泛的两个定理。
The paper elaborates the relationship between differential mean-value theorems by using the views of popularization and contraction.
运用推广与收缩的观点阐述了微分中值定理之间的关系,讨论了微分中值定理在微分学中的地位与作用,介绍了微分中值定理在解题中的应用。
Also,the article has demonstrated of the application of differential mean-value theorem in derivative limit,derivative estimate value,existence of root of an equation,proof of inequality and calculation of functional limit upon many examples.
同时,用若干实例说明了微分中值定理在导数极限、导数估值、方程根的存在性、不等式的证明、以及计算函数极限等方面的一些应用。
Some Improvement About Item-by-item Differential Theorem for Function Series;
关于函数项级数逐项微分定理的改进
The mid-value theorems is the basic theorems in the calculus.
微分中值定理是微分学中的基本定理。
qualitative theory of ordinary differential equation
常微分方程定性理论
Sub-differential of Convex Functions and the Converse of the Mean Value Theorem
凸函数的次微分与微分中值定理的逆定理
The Analytic Behaviour of Intermediat Point ξ in the Mean Value Theorem for Differentials;
微分中值定理中“中值点”ξ的分析性质
Analytical Proof of the Lagrange Intermediate Value Theorem of Calculus;
Lagrange微分中值定理的分析证明法
STRONG LAW OF THE MEAN FOR MEASURE-UNITYOF THE LAWS OF THE MEAN FOR CALCULUS;
测度强中值定理──微积分中值定理的统一
A Stability Theorem For Differential Equations With Fast And Slow Components;
具有快速与慢速分量微分方程的稳定性定理
PRINCIPLE, VERIFICATION ADN ERROR ANALYSIS OF OPTICAL MICROMETER
光学测微器的原理、检定及误差分析
Mechanical Theorem Proving in Differential Geometry about Curves on Surface;
微分几何曲面上曲线定理的机器证明
Embedding Theorems and the Discreteness of the Spectrum of a Class of Differential Opertors;
嵌入定理及一类微分算子谱的离散性
The Extent of Comparison Theorems of Ordinary Differential Equations to the Higher Order;
一阶常微分方程比较定理的高阶推广
Shallowly Discusses in the Differential Theorem of Mean Proof the Auxiliary Function;
浅谈微分中值定理证明中的辅助函数
Oscillation Theorems for Second Order Strong Sublinear Differential Equations;
二阶强次线性微分方程的振动性定理
A Picard Theorem for Iterative Differential Equations;
一类迭代微分方程的Picard型定理
Discussion on Differential Mean Value Theorem "mean value point";
关于微分中值定理“中值点”的讨论
The Basic Theorem of Integrable-differential on the Stronger Schwarz Derivative;
关于强Schwarz导数的微积分学基本定理
The Simple Proof for Solution of Higher order Linear Differential Equations;
高阶线性微分方程解构造定理的简证
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号