This paper solved the problem about the intersection of λ_1 fold triple systems and λ_2 fold triple systems where(λ_1,λ_2)=(1,2),(1,3),(2,3).
本文解决了v阶λ1重三元系和v阶λ2重三元系的相交数问题,其中(1λ,2λ)=(1,2),(1,3),(2,3)。
In this paper, the intersection problem was completely solved for simple three fold triple systems, by using embedding technigues and the difference method.
本文运用嵌入技巧与差方法完整地解决了单纯3重三元系的相交数问题。
The intersection problem of pure Mendelsohn triple systems was almost completely solved in this paper, namely, it is proved that for any v ≡0,1(mod 3), v ≥19, there exists a pair of pure MTS(v) s intersecting in s cyclic triples if and only if s ∈{0,1,2,…, t v -6,t v-4,t v } where t v=v(v-1)/3 .
讨论严格单纯 Mendelsohn三元系的相交数问题 ,并证明了当 v≥ 1 9时 ,对任一正整数 v≡ 0 ,1 ( mod 3) ,存在两个严格单纯的 MTS( v)相交于 s个循环三元组的充要条件是 s∈ {0 ,1 ,2 ,… ,tv- 6,tv- 4,tv},其中 tv=v( v- 1 ) /3。
As a first step of the study on the intersection problem for resolvable Mendelsohn triple systems RMTS( v) , this paper provided a series of constructions for RMTS( v )s with given intersection numbers for v ≤27.
作为研究可分解 Mendelsohn三元系 RMTS(v)相交数问题的第一步 ,给出了 v≤ 2 7时给定相交数的 RMTS(v)的一系列构造 。
In this article, we study the intersection numbers of cross sections of bundles on manifolds with boundary.
本文主要研究了带边流形上丛截面的相交数 应用作倍流形上的向量场的延拓 ,我们得到了带边流形上的Euler数用相交数的表
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号