A note on the law of large numbers for Banach space values asymptotic martingales;
B值渐近鞅的大数定律的一个注记
According to the law of large numbers and variance analyses,a kind of Monte Carlo algorithm for computing triple integral was designed,and a proper random number was used to reduce theoretically variance to zero.
根据大数定律,通过方差分析,设计了理论意义下误差最小的有利随机数三重积分蒙特卡罗算法,用实际算例验证了该方法的优良性,并证明了蒙特卡罗方法积分结果的分布符合概率中心极限定理。
Local convergence and law of large numbers for Banach-space-valued amart are researched.
主要研究取值于p一致光滑的Bananch空间值渐近鞅及其差序列的局部收敛性和大数定律,将引理[2]中胡迪鹤关于鞅的相应结论推广到渐近鞅的情况,并且推广了万成高在文献[5]和文献[6]的相应结论。
Discussed the laws of large numbers and convergence rate for B valued quasimartingale,these results generalize and extend some classical results.
研究了B值t-拟鞅的大数定律及收敛速度,使得实值独立同分布随机变量序列的一些经典结果得到了推广和一般化。
In this paper, laws of large numbers for martingale difference like arrays in Banach spaces are investigated and related geometrical characterization of Banach spaces is discribed.
主要研究了 B值鞅差型阵列的大数定律 ,并讨论了它们与 Banach空间几何特征的依赖关
Complete convergence and law of large number of arrays of rowwise NQD random variables;
行为两两NQD的随机变量阵列的完全收敛性和大数定律
it is proved that law of large number for B-valued paraproduct martingale operator is valid under certain conditions.
应用鞅不等式和B anach空间的几何性质,证明了当B是p阶光滑时,取值于B anach空间上的双鞅算子在一定条件下的大数定律成立。
Ushering in random variables,the essay uses the law of large number of probability to solve a type of limit issue of n-lay integration.
引进随机变量,用概率中的大数定律,解决一类特别的n重积分的极限问题,还利用中心极限定理,求解结论中含有正态分布模式的极限问题。
Data Placement Algorithm Based on Bernoulli Laws of Large Number
基于贝努利大数定律的数据分布算法
The application of great nember law and the centre limit theorem;
大数定律与中心极限定理的实际应用
Law of Great Number and Law of Diminishing Marginal Utility in Statistic Activity;
统计活动中的大数定律和边际效益递减律
The Strong Law of Large Numbers for MTH Countable Nonhomogeneous Markov Chains;
可列m重非齐次马氏链的强大数定律
Some Laws of Large Numbers for Sequences of NA and B-valued Quasi-martingale Difference;
NA和B值拟鞅差序列的几个大数定律
Strong Law of Large Number of the Absolute Value Sequences from ARCH;
ARCH模型绝对值序列的强大数定律
On the Weak Law for Randomly Indexed Partial Sums for Arrays;
阵列的随机指标部分和的弱大数定律
The Improving Form of The Cesaro s Law of Large Numbers for Empirical Processes;
经验过程的Cesaro大数定律的改进形式
Strong Laws of Large Numbers for Functionals of Countable Nonhomogeneous Markov Chains
可列非齐次马氏链泛函的强大数定律
The strong law of large numbers of nonhomogeneous hidden Markov models
隐非齐次马尔可夫模型的强大数定律
Marcinkiewicz Strong Laws for Weighted Sums of -mixing Random Variable Sequences
混合序列加权和的Marcinkiewicz强大数定律(英文)
Strong Law of Large Numbers of Absolute Value Sequences from Varying-Coefficient ARCH Models
变系数ARCH模型绝对值序列的强大数定律
Evaluation Methods of Parametric Estimation Based on Strong Law of Large Number
基于强大数定律的参数估计的评价方法
Using Law of Large Number and Central Limit Theorem to Work out Limit;
利用大数定律和中心极限定理求解极限
The Complete Convergence and Strong Law of Large Numbers for PA Random Variables Sequence;
PA随机变量序列的完全收敛性和强大数定律
Strong Law of Large Numbers and Complete Convergence for Arbitrary Stochastic Sequences;
任意随机变量序列的强大数定律和完全收敛性
Hajek-Renyi-Type Inequality and Strong Law of Large Numbers on Sums of Random Variables;
关于随机变量和的Hajek—Renyi型不等式及强大数定律
Weak law of large numbers for the random variable sequences of un-independent and un-identical distribution;
非独立不同分布随机变量序列的弱大数定律
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号