On a Class of Retractions in LCS;
关于LCS中的一类保核收缩
Some interesting new informations about them are obtained as following:(1)In a connected category, the morphisms whose domains (codomains) are initial objects, terminal objects or zero objects are all sections (retractions).
主要结果有:(1) 在连通范畴中,以始对象或终对象或零对象为定义域( 取值域) 的态射皆为截片( 保核收缩) 。
By using the properties of nonexpansive retraction mapping,we obtain the results that the iterative sequences converge weakly to the common zero points of finite accretive mapplings in a real uniformly convex Banach space which satisfies Opial\'s condition or the norm of which is Frechét differentiable.
本文研究了有限个增生算子公共零点的迭代构造,利用非扩展保核收缩映射的性质,在满足Opial条件或其范数是Frecht可微的实一致凸Banach空间中,获得上迭代序列弱收敛于有限个增生算子公共零点的结论。
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号