The concept of a special normal operator, self-conjugate operator, in Hilbert space was extended to a polynomial conjugate operator.
将Hilbert空间上特殊的正规算子———自共轭算子的概念推广到多项式共轭算子。
The properties of the operator and the necessary and sufficient conditions for the regular value to exist were studied using the concept and properties of normal operators in Hilbert space, the spectrum mapping principle and analogy.
应用希尔伯特空间上正规算子的概念、性质、谱映射定理和类推的方法,研究了该类算子的性质及正则值存在的充要条件。
The properties of the polynomial conjugate operator and the necessary and sufficient conditions for the regular valve to exist are studied by using spectral decomposition and properties of normal operator in Hilbert space.
应用希尔伯特空间上正规算子的概念,性质和谱分解定理,研究了多项式共轭算子的性质及正则值存在的充要条件。
In addition,we show that Weyl s theorem holds for analytically M-hyponormal operators andα-Weyl s theorem holds for analytically cohyponormal operators.
若T有单值延伸性且T为reguloid算子,则Weyl定理对f(T)成立,其中f∈H(σ(T)),而当T~*有单值延伸性且T是reguloid算子,α-Weyl定理对f(T)成立,其中,f∈H(σ(T)),作为定理应用,我们证明了Weyl定理对解析M-亚正规算子成立,α-Weyl定理对解析余亚正规算子成立。
An upper bound is obtained for the distance between two hyponormal operators in terms of the distance between their spectra.
利用算子的谱给出两个亚正规算子间距离上限的刻画,并对亚正规算子A,得出inf‖A-λI‖=‖A‖λ∈C当且仅当∩ U(x,‖A‖)={0} x∈σ(A),其中U(x,‖A‖)={z∈C;|z-x|≤‖A‖}。
Firstly,The relation between the quasi-normal and hyponormal operators is investigated.
讨论算子的拟正规性与亚正规性的关系,并以单侧加权移位算子为例证明了并非所有的亚正规算子是拟正规的。
On the Equivalence of Several Propositions in Normal Solution Operators;
关于正规能解算子几个命题的等价性
Normality、Subnormality and Hyponormality of Toeplitz Operators and Products of Toeplitz Operators;
正规、次正规、亚正规的Toeplitz算子及Toeplitz算子乘积
Aluthge transforms of essentially normal operators
本性正规算子的Aluthge变换
Real Positive and Positive Solutions to the Operator Equation AXB=C
算子方程AXB=C的实正解和正解
Compact Normal Operators, Commutativity up to a λ for a Pair of Operators and Operator Completion Problems;
正规紧算子λ-交换算子对和算子补问题
On the Positive Solutions of the Operator Equations X+A~*X~(-t)A=I;
算子方程X+A~*X~(-t)A=I的正算子解
On Positive Operator Solutions of Operator Equation X~s-A~*X~(-t)A=I
算子方程X~s-A~*X~(-t)A=I的正算子解
Every normal operator is trivially subnormal.
每一个正规算子显而易见地是次正规的。
Operators Related to Log-ω-hyponormality and p-ω-hyponormality
与log-ω-亚正规性和p-ω-亚正规性相关的算子
Regular E-mail messages cannot contain computer viruses, but attachments can.
常规的电子邮件正文不能包含计算机病毒,但附件却可以。
Complete Form of Furuta Type Inequalities and Classes of Operators Including Hyponormal Operators;
Furuta型不等式的完全形与含亚正规算子的算子类
Weyl's theorem and hypercyclicity for algebraically *-paranormal operators
*仿正规算子的Weyl定理以及超循环性
Studies on the Positive Operator Solutions to Operator Equations X+A~*X~(-t)A = Q
关于算子方程X+A~*X~(-t)A=Q的正算子解的研究
SS-Quasinormal Subgoups and Solvability of Finite Groups
SS-拟正规子群与有限群的可解性
The influence of c-normal subgroup on the structure of super solvable group
c-正规子群对超可解群结构的影响
Thought is atomistic and algorithmic; it can be broken down into' building blocks' which are combined and manipulated by formal logical rules.
思想,像原子似的,具有算法规则;它能分解为可组合的“积木”,按形式逻辑规则进行操作。
An Improved Particle Swarm Optimization Method for Solving Bilevel Programming Problem
求解二层规划问题的改进粒子群算法
Priority rule-based particle swarm optimization for RCPSP
采用优先规则的粒子群算法求解RCPSP
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号