An analysis of sub-simple properties of automorphism groups by a computer;
自同构群的次单性分析及计算机实现
The orders of automorphism groups of some families p-groups;
某一类家族p-群的自同构群的阶(英文)
In this paper, we determine explicitly the automorphism of filirom Lie algebra W6, the solvable Lie algebra with nilradical W6, and prove that this solvable Lie algebra has no nontrivial (non-constant) invariant.
文章确定了filiform李代数W6的自同构群,确定了以W6为nil-根基的可解李代数及其唯一性,并且证明了这类可解李代数没有非平凡(即非常数)不变量。
A finite p-group G is called LA-group, if the order of G divides the order of the automorphism group of G.
称有限p-群G是LA-群,如果群G的阶能整除群G的自同构群的阶。
Abstract:Let G be a soluble block-transitive automorphism group of 2-(56,7,1) design D.
设G是设计2-(5~6,7,1)的一个可解区传递自同构群,则G是旗传递的且G■A■L(1,5~6)。
Holomorphic vectors and holomorphic automorphism groups of a sort of three-dimensional Hopf manifold;
一类三维Hopf流形的自同构群和全纯向量场
In this paper,The order of automorphism groups of metacyclic inner abelian p-groups are determined when p≠2,and the structure of automorphism groups are also given.
本文确定了亚循环的内交换p-群(p≠2)的自同构群的阶,并给出了其自同构群的结构。
Meanwhile,the formula about number of order on the group of automorphisms over finitely generated module over Ring Fq[x] is deduced.
在特征为2的域F2上给出n阶矩阵为平方矩阵的充要条件,从而刻划了平方矩阵的特征,求出环Fq[x]上有限生成模的自同构群的阶数公式,由此得到F2上全体平方矩阵的计数公式。
And their automorphism group sand outer automorphism groups are determined.
对任意奇素数p,引入了一类所谓的算术p-群,并确定了其自同构群和外自同构群,所得结果推广具有一个循环极大子群的p-群的相应结论。
The outer automorphism group of the free product of two syclic groups is constructed, and two exact formulas for calculating its order are established.
具体地构造出两个有限循环群的自由积的外自同构群,并给出了其阶的计算公式。
A formula of the order of the outer automorphism group of a semidirect product is obtained,which can be applied to the investigation of the triviality of the outer automorphism group.
设有限群 G=N H为半直积 ,本文借助于 N和 H的自同构求出了 G的外自同构群阶的公式 ,并给出了若干应用。
According to the property and structure of generalized quaternion groups,using the methods of the extension theory of groups,the groups of all automorphisms of generalized quaternion group Q 4p and Q 4pm for odd prime p are determined,and the general structure of that of Q 4n deduced from that of Q 4p and Q 4pm is as follows:Suppose that p 1 is the smallest prime divisor of n,and n=p r .
根据广义四元群 Q4 n的结构和性质 ,利用群的扩张理论 ,先确定了 Q4 p与 Q4 pm的全自同构群的结构 ,由此归纳出一般的广义四元群 Q4 n的全自同构群的结构如下 :设 p1 为 n的最小素因子 ,n=pr1 1 pr22 … prkk 为 n的素数分解 ,那么(a)当 p1 >2时 ,Aut(G) =〈α〉:(〈η1 〉×〈η2 〉×…×〈ηk〉) ;(b)当 p1 =2时 ,Aut(G) =〈α〉:(〈η2 〉×…×〈ηk〉) , r1 =1〈α〉:(〈γ〉×〈η2 〉×…×〈ηk〉) , r1 =2〈α〉:(〈μ〉×〈ν〉×〈η2 〉×…×〈ηk〉) , r1 ≥ 3。
The Construction of Group G with Automorphism Group A(G) of Order 2p
自同构群A(G)的阶为2p的群G的结构
LA-Group and the Stractore of Auto-Morphism Groups of Some Special p-Groups;
若干LA-群及一类特殊P-群自同构群的结构
The order of the automorphism group of finite abelian group
有限交换群的自同构群的阶(英文)
The Finite Groups of which the Automorphism Group s Order is 2~3p~2;
具有2~3p~2阶自同构群的有限群
The Orders of Automorphism Groups of Groups of Order P~6 (φ_(11),φ_(33));
P~6阶群的自同构群的阶(φ_(11),φ_(33))
THE ORDERS OF AUTOMORPHISM GROUPS OF GROUPS OF ORDER p5;
p~5阶群的自同构群的阶(Φ_6—Φ_(10))
Finite Nilpotent Groups with Automorphism Group of Order 4p~3
具有4p~3阶自同构群的有限幂零群
Finite nilpotent groups with automorphism group of order 4p~2q
具有4p~2q阶自同构群的有限幂零群
A New Series of LA-Groups and the Order of Their Automorphism Groups
一系列新的LA-群及其自同构群的阶
Approach of Calculating the Order of Automorphism Group of p-Group
计算有限p-群的自同构群阶的方法
An Action from Automorphism Group on Actor Group to Characteristic Group
自同构群到对特征子群的商群上一作用
On the Autmorphism Groups of Metacyclic p-group with a Cyclic Maximal Subgroup
具有循环极大子群的亚循环p-群的自同构群
The Order of Automorphism Group of the Group of Order p~6 (φ_(14),φ_(15),φ_(22));
p~6阶群(φ_(14),φ_(15),φ_(22)的自同构群的阶
In other words it has a large automorphism group.
换言之,它有大的自同构群。
Derivation Algebra and Automorphism Group of F[x,y];
代数F[x,y]的导子代数和自同构群
Several Properties of Kneser Graph and Its Automorphism Group;
Kneser图的若干性质及其自同构群
No-solvable Block-transitive Automorphism Group of 2-(v,11,1) Designs;
2-(v,11,1)设计的非可解区传递自同构群
Automorphism and Anti-automorphisms of Quantum Group
量子群V_q(sl(2))的自同构和反自同构
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号