(2)Let R be a primitive ring,M be a faithful and non-reduce left R -module and M= Rm(o≠or∈M),then L={r∈R|rm=0} is an essential left ideal of R if and only if R is not a ring with maximal annihilator left ideal.
(2)设 R 是本原环,M 是忠实既约 R-模,M=Rm(0≠m∈M),则 L={r∈R|rm=0}是 R 的本质左理想子环的必要充分条件是 R 不含极大零化左理想。
In this paper, we describes a group as a primitive ring by means of that ring R is a primitive ring if and only if there exists irreducible faithful module over R , through decomposing irreducible module over RG into irreducible module over RH and extending module over RH into irreducible module over RG .
借助于环 R为本原环的充要条件是存在忠实既约模 ,通过将既约 RG-模分解为既约 RH-模及将既约 RH-模扩张为既约 RG-模 ,刻画了群环为本原
In this paper,we Introduce two partitions of the set of idempotentelements of rank one in a primitive ring with non-zero socle,and applythem to show the strncture of primitive rings with non zero socles.
本文提出了含非零基座本原环的全体秩等于1的幂等元的两种分类,据此进一步揭示了此类本原环的结构。
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号