A dual function scrambling method is described for the transmission in satellite channels This is a practical analog TV scrambling technique.
综述了目前国内外常用的有线电视加密技术特点 ,介绍了一种适合于卫星信道的实用电视加密技术——双函数加密方法 ,并给出了实用设计框
In this paper,many traveling wave solutions to NLS equations were obtained by using hyperbola function method and Wu-elimination method,which include new traveling wave solutions and rational traveling wave solutions.
给出一种求解非线性发展方程精确行波解的新方法——双函数法。
With the help of Mathematica, new explicit and exact traveling solutions for the generalized (2+1)-dimensional Nizhnik-Novikov-Vesselov equation are obtained by using bifunction method and Wu-elimination method.
借助计算机代数系统Mathem atica,利用双函数法和吴文俊消元法,获得广义(2+1)维Nizhink-Novikov-Vesselov(GNNV)方程的多组新的显式精确行波解,包括孤波解和周期性解。
With the help of Mathematica, new explicit and exact traveling solutions for Boussinesq equation are obtained by using bifunction method and Wu elimination method, including new solitary wave solutions and periodic solutions, and the bifunction method is further complemented.
借助计算机代数系统 Mathematica,利用双函数法和吴文俊消元法 ,获得 Boussinesq方程的多组新的显式精确行波解 ,包括孤波解和周期性解 ,同时进一步补充和完善了双函数
In this paper, with the help of Mathematica, new explicit solitrary wave solutions of KdV equation are obtained by bifunction method and Wu-eliminition method, thus the bifunction method is further complemente
借助Mathematica计算机代数系统 ,采用双函数法和吴文俊消元法 ,获得KdV方程的多组新的孤波解 ,进一步补充和完善了双函数
Stimulated by extended tanh-function method, a double functions method is proposed for constructing exact travelling wave solutions for nonlinear evolution equations.
受广义tanh-函数法的启发,该文给出了一种求解非线性发展方程精确行波解的新方法:双函数法。
By means of the improved double functions method, many kinds of exact travelling wave solutions for a class of nonlinear evolution equations are obtained, which contain soliton wave solutions and periodic solutions.
使用改进的双函数法 ,获得了一类非线性发展方程组的多组精确行波解 ,其中包括孤波解和周期解 。
With generalized double function method,higher-order Davey-Stewartson I Equation is studied.
应用广义双函数法研究了具有物理背景的Davey-StewartsonI方程,通过引入新的基函数、变换和齐次平衡原理,得到了该方程一批新的形式更丰富的显式解。
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号