Study and implementation of the fast production algorithm of big prime number;
大素数的快速生成研究与实现
The Primes of The Form (p~p-1)/(p-1);
形如(p~p-1)/(p-1)的素数
A generation method of large primes based on RSA;
一种基于RSA公钥密码体制大素数的生成方法
Proof of infinity of sextuplet primes and studies into its application and dissemination;
六生素数是无限多的证明及其推广应用研究
The superior algorithm and automatic generation of The structual ways For a kind of complete exponent magic square of prime number;
一类素数阶完全幻方构造的优化性与自动生成
Selecting tests from libraries with prime number relation codes;
素数作为相关码选题算法
On the integer represented as the product of k prime numbers in arithmetic progression;
关于表整数为算术数列中k个素数的乘积
Sum of square roots of prime numbers is irrational;
素数的平方根之和是一个无理数
We make use of constructive method, gain sufficient condition for discriminant prime numbers and prime fraction, make use prime fraction can recursive draw up prime table.
利用构造法获得了常表素数的公式,得到了判别Fermat数为素数的有效方法,同时猜测该素数公式可产生指定区间的任何素数,并可循环构造任意素数表。
In this paper, we give some representation theorems of prime numbers for Sundaram sieve, and also, we obtain some discriminuting theorems of prime and correspoding sieve.
利用 Sundaram筛法 ,给出素数的表示 。
?This essay has applied the characteristics of sine functions of Goth function, and according to Kronecher function, it has set up a new function to represent composite number and thus come out with a more accurate function of prime number distribution.
本文根据表哥德巴赫猜想定义了卷和函数,并依照素数分布的函数得到了表哥德巴赫猜想的函数形式。
In prime number distributed research process,and through established one kind of new sieve method and the stair theory,this article obtained about three group of prime number distribution recurrence formula: The 1st is not bigger than x the prime number integer recurrence formula;The 2nd is not bigger than x the twin prime integer recurrence formula;The(3rd Recurrence) formula.
在研究素数分布过程中,通过创立一种新的筛法与台阶理论,得到关于素数分布的三组递推公式:不大于x的素数个数与孪生素数对数量的递推公式;不大于x的孪生素数个数的递推公式;任意偶数x≥6表为两个奇素数之和与孪生素数对数量对数的递推公式。
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号