Combining the statistic analysis on the site data of Xinjiang topic,it also puts forward the convergence condition of individual sample size about data among the road quota based on the theory of student distribution in tables and graphs and offers the corresponding sug.
通过列表的形式,提出了基于t分布理论的公路定额数据小样本容量的收敛条件,并给出了相应的建议。
Based on the convergence condition of the closed loop ILC,the article also proposes the method of designing ILC.
应用频域分析方法讨论了一类闭环迭代学习算法的收敛条件和性能,指出其比Arimoto开环迭代学习算法具有明显的优越性,并在讨论迭代收敛条件的基础上给出了闭环迭代学习算法的频域设计方法。
The convergence condition of this interactive method is discussed in detail in this paper.
同时详细讨论了迭代法的收敛条件 。
It is necessary to research it s convergent conditions to keep it s big range of convergence.
牛顿下降法xn+1=xn-ωnf′-1(xn)f(xn)是求解非线性方程f(x)=0的一种经典的迭代法,有必要研究其收敛条件,使其保持大范围收敛等优点。
It is necessary to research its convergent conditions.
对于求解非线性方程f(x)=0,牛顿下降法xn+1=xn-ωnf′-1(xn)f(xn)是一种经典的迭代法,具有大范围收敛等优点,有必要研究其收敛条件,为了使其能够适应更多环境的需要,利用优序列的方法,在一个更一般的条件下选取了一个较为一般的下降因子序列{ωn},证明了此情形下牛顿下降法的收敛性。
Further econometric analysis based on the neo-classical convergence framework on inter-provincial economic growth during the transitional period leads to the conclusion of conditional convergence.
本文以新古典收敛模型为框架,对转型时期各省区的经济发展进行计量分析,得出了条件收敛的结论。
The results show that the conditional convergence has been identified,that is,given the same level of physical capital investment rate,human capital,market op.
研究结果发现,中国各地区间的经济增长存在显著的条件收敛(conditional convergence)特征,即在控制了各省间人口增长率、物质资本投资率、人力资本水平和制度因素差异后,可以观测到明显的经济增长收敛趋势。
It also calculates the conditional convergence speed of the province by applying Solow-Swan model with panel data,and finds that a slow but steady catch-up does exist in the province.
利用斯旺-索洛模型,借助面板数据,对福建省各地区经济增长条件收敛进行分析,估算条件收敛速度,揭示了福建省落后地区以较低速度实现对发达地区的赶超的事实。
The causes mentioned in this paper about non-convergence for model are unreasonable methods to process missing data which can be solved by EM and MCMC algorithm, multicollinearity among variable and too strict convergence conditions for model solved by re-adjustment of them.
笔者在利用协方差结构模型对北京市居民住房消费行为和意愿进行量化研究时发现协方差结构模型存在不收敛问题,文章提出,导致模型不收敛的原因,一是缺失数据处理方法不当,可采用期望最大化算法(EM算法)和马尔科夫链蒙特卡罗法(MCMC算法)处理数据缺失;二是变量间存在多重共线性,可去掉设置不合理的潜变量以避免共线性问题;三是模型过于复杂,收敛条件苛刻,可调整模型使之简单化,并重新设定收敛条件,促使模型收敛。
Cauchy condition for convergence of a series
柯西级数收敛条件。
Weaker Condition of EPI Convergence--EPI Nesting;
epi收敛条件的弱化——epi嵌套
On the properties of Sum Function at the Condition of Semi - Convergence Uniform;
亚一致收敛条件下和函数的分析性质
Finally, the convergence and convergence conditions are verified with simulation results.
最后用仿真结果对收敛性和收敛条件进行了验证。
conditionally convergent double series
条件收敛的二重级数
Study on EPI Convergence and Weaker Condition of Function Sequence Convergence
EPI收敛与函数序列收敛弱化条件的研究
A Sufficient Condition about Convergence Uniform of Function and a Sufficient and Necessary Condition about Convergence of Positive Series;
函数列一致收敛的一个充分条件和正项级数收敛的一个充要条件
Under the New Condition the Convergence of Newton-Like Meihod;
在新条件下拟Newton迭代方法的收敛性
The Necessary Convergence Condition of integral from a to (+∞) f(x)dx;
再论integral from a to (+∞)f(x)dx收敛的必要条件
The Convergence of Algorithm for Solving Nonlinear Equations under Weak Condition
弱条件下解非线性方程算法的收敛性
Convergence of Chebyshev method under mild differentiability conditions of the first derivative
弱一阶可微条件下Chebyshev迭代法的收敛性
Note on the convergence of AOR and 2PPJ iterative methods
预条件AOR和2PPJ迭代法收敛性的注记
A sufficient and necessary condition of the AOR iterative method for consistently ordered matrices
相容次序矩阵AOR迭代收敛的充要条件
D(∧) Convergence Rate of Conditional Moments
D(∧)吸引场的条件矩的收敛速度
Convergence theorems for USSOR iterative methods with the precondition (I+C_α)
预条件(I+C_α)的USSOR迭代法收敛性定理
Proof of the Function Seies Convergence Uniform Theorem and Necessary and Sufficient Condition in General Integral Convergent;
函数项级数一致收敛定理的证明和广义积分收敛的充要条件
Global convergence analysis of the proposed method is given.
并在通常条件下证明了方法的全局收敛性。
ON THE CONVERGENCE OF DISPLACEMENT AND OTHER QUANTITIES IN RITZ METHOD
关于用里兹法求位移等量的收敛性条件
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号