The mechanism of coupled evanescent wave temperature sensors is analyzed with the theory of strong coupling.
用强耦合理论分析了耦合式渐逝波温度传感器的传感机理,在此基础上设计了一种基于单片机的温度传感系统,并引入硬件和软件双重补偿修正,来消除前端电路噪声影响,达到提高测量结果稳定性的目的。
The study on the mean number of phonons of the strong-coupling bondage polarons in magnetic field;
磁场中强耦合束缚极化子的声子平均数的研究
The first excitation energy and the mean number of phonon of the strong-coupling magetopolarons in the polyatomic semi-infinite polar crystals were studied through a linear-combination operator and unitary transformation.
采用线性组合算符和幺正变换,利用变分法计算了多原子半无限极性晶体中由电子和光学声子强耦合相互作用所产生的磁极化子的第一激发能量及平均声子数,并通过适当的数值计算图示了它们与磁场的关系。
Based on model of Huybrechts strong-coupling polaron,the ground state energy of the system,in which the excitons interact with both the weak-coupling bulk longitudinal-optical(LO) phonons and strong-coupling interface-optical(IO) phonons in a polar crystal,is studied by using the Lee-Low-Pines variational method,the self-trapping energy and the induced potential of the excitons are derived.
在Huybrechts关于强耦合极化子的模型基础上,采用LLP变分法研究了极性晶体中激子与IO声子强耦合、与LO声子弱耦合体系的基态能量,推导出了激子的自陷能和诱生势的表达式,并以AgCl/AgBr晶体为例进行了数值计算,结果表明,激子的自陷能不仅与激子的坐标z有关,而且电子-空穴间距离ρ对激子自陷能的影响也十分显著;激子的诱生势不仅与电子-空穴间距离ρ有关,而且激子距离晶体界面的位置z对诱生势的影响也十分显著。
The excitation energy of the strong coupling surface polaron have been calculated using Huybrechts method by the present authors and co-workers.
采用Huybrechts线性组合算符和幺正变换方法,导出了晶体中强耦合表面磁极化子处于基态的振动频率和有效哈密顿量,讨论了坐标z的两种极限情况,对RbCl晶体进行了数值计算。
Temperature dependence of the effective mass of the strong coupling magnetopolaron in polar crystals are studied by means of an improved linear combination operator method.
采用改进的线性组合算符法研究极性晶体中强耦合磁极化子的有效质量与温度的关系。
The properties of a strong coupling magnetopolaron in polar crystals are studied using a linear combination operator.
本文采用线性组合算符法研究极性晶体内强耦合磁极化子的特性。
This paper discussed a strongly coupled prey-predator model under the homogeneous Neumann boundary condition.
讨论了一个强耦合的Holling-Tanner型捕食模型,利用Harnack不等式和最大值原理给出了它正解的上、下界估计。
We establish the estimates of positive solutions to a strongly coupled ecological systems in L∞(0,T;H1(Ω)) by energy methods and using Sobolev imbedding theorem and interpolation.
运用能量方法,通过采用嵌入定理、内插不等式建立了非线性强耦合生态系统正解的L(∞0,T;H(1Ω))估计。
With the method of upper and lower solutions,its associated monotone iterations and the fixed point theorem,the coexistence solutions to a strongly coupled elliptic system are studied.
采用上下解及相应的单调迭代序列的方法,结合Schauder不动点定理,研究带Dirichlet边界条件的两种群的互惠模型强耦合问题共存解。
In this paper,we study a strongly-coupled parabolic system with initial boundary values.
考虑一个强耦合抛物系统的初边值问题,通过利用Hlder不等式、最大值原理,以及先验估计的技巧给出了这类系统解的‖。
A strongly-coupled parabolic system with initial boundary values is studied.
考虑一个强耦合抛物系统的初边值问题,通过利用抛物方程解的先验估计的技巧以及微分-积分不等式,给出了这个系统解的整体吸引子的存在性。
In this paper, we study a strongly-coupled parabolic system with initial boundary values.
本文利用抛物型方程解的先验估计方法给出了一类强耦合系统解的整体存在性及一致有界性。
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号