An existence theorem of periodic solutions was obtained for non-autonomous second order systems with sub-additive potential by using the least action principle.
通过使用最小作用原理,对于具有次可加位势的非自治二阶系统,获得了一个周期解的存在性定理。
The reflection coefficient and refraction coefficient are also given; the analysis shows the versatility of the principle of least action,Snell s law and Fresnell s law in the research on the left-handed material,and the negative refraction effect is explained.
研究了电磁波在左右手介质界面折射与反射的特性,给出了折射系数和反射系数,从另外一个方面探讨了最小作用量原理在左手材料中的适用性;从电动力学和最小作用量原理证明了Snell定律,验证了Snell定律在左手材料中的适用性,并且得到Fresnell公式在左右手材料中的一致性。
In this paper,we psesented that the principle of least action or Hamilton principle is ample and necessary condition of Lagrangian equation,pointed out the properties of Lagrangian function briefly,and gave the generalization and application of Lagrangian function in physics.
本文论述了力学最小作用量原理或哈密顿原理是拉格朗日方程的充分必要条件,简述了拉格朗日函数的性质,指出最小作用量原理及拉格朗日函数在物理学中的推广及应用。
This paper discusses the mechanical properties of noncontemporaneous variation,from which the Hamilton principle and the principle of least action are derived.
本文讨论了非等时变分的力学性质,并由此导出Hamilton原理和最小作用量原理。
The application of the least-action principle in electricity;
最小作用量原理在电学中的应用实例
According to the Least-action principle,Distribution of Charge on Conductor surface is discussed by using of method of Lagrange s multiplier,and some useful results are obtained.
依据最小作用量原理,利用Lagrange乘数法讨论了导体上电荷的分布问题,得到了一些有用的结果。
This paper analyses the development process of the least-action principle in physicsis and discusses its internal implications and functions.
分析物理学中最小作用量原理的发展和形成过程,并讨论其在基础物理学、理论物理学中的地位和重要作用,以及其深刻内涵。
The interaction between two coherent dark solitons of nonlinear Schrodinger equation is derived using the least action principle aproach.
利用最小作用量原理导出非线性 Schrodinger方程两个相干暗孤子之间的相互作用 。
The interaction between two dark solitons of nonlinear Schrdinger equation is derived using the least action principle approach.
用最小作用量原理导出了非线性Schr dinger方程两个暗孤子间的相互作用,作为孤子间距Δ和初位相差θ的函数,它随Δ的增大而指数地衰减,当两个孤子间初位相差θ<π2时几2时相互吸引,θ=π2时相互排斥,θ>π乎不存在相互作用;数值计算与解析结果相符,也验证了与已有理论的有效性一致性。
The interaction between two dark solitons is derived from nonlinear Schrodinger equation by the least action principle approach.
利用最小作用量原理,从非线性Schrdinger方程,导出两个暗孤子之间的相互作用。
PRINCIPLES OF LEAST ACTION OF VARIABLE MASS NONHOLONOMIC NONCONSERVATIVE MECHANICAL SYSTEMS;
变质量非完整非保守系统的最小作用量原理
RESEARCH ON ESTABLISHING ANALOGUE RELATIONSHIP BY USING MINIMUM ACTION PRINCIPLE
利用最小作用量原理建立比拟关系的研究
PRINCIPLES OF NEW FORM LEAST ACTION OF GENERALIZED NONCONSERVATIVE SYSTEMS
广义非保守系统的新型最小作用量原理
Application of Least Square Method in Measure Testing;
最小二乘法原理在计量测试中的应用
The quality management principles can be used by top management as the basis of its role, which is as follows:
最高管理者可以运用质量管理原则作为发挥以下作用的基础:
Helmholtz principle of minimum energy dissipatio
亥姆霍兹最小能量损耗原理
Measurement data processing based on maximum entropy method
最大熵原理在测量数据处理中的应用
The Analysis of "Least Number Principle",the Solution to Problems in Number Theory;
运用“最小数原理” 解决数论问题
Advances on the least energy consumption principle and its application
关于最小耗能原理及其应用的新进展
Application of Hodge Decomposition on Minimum Dissipation Principle
Hodge分解在最小耗散原理中的应用
(Z_2)~k-actions and Minimal Data of Normal Bundle;
(Z_2)~k作用与最小法丛信息量
The Maximum-principle and Minimun-principle Of Extremes Principle Apply In Mathematics Contesting
极端性原理之最大数与最小数原理在数学竞赛中的应用
Role of top management within the quality management system
最高管理者在质量管理体系中的作用
As the basic principle that local governments provide services, Best Value Principle also holds true to the fund management of primary and secondary schools.
最优价值原则作为英国地方政府提供服务的基本原则,同样适用于中小学的资金管理。
Numerical Approach to Interaction of Intense Laser Fields with Atoms Using Linear-least-squares Fitting Method;
用最小二乘法研究强激光场与原子的相互作用
Principal and Application of Aspheric Surface Measuring Instrument in Miniature;
小型非球面轮廓测量仪的原理和应用
principle of minimum potential energy in theory of elastic- ity
弹性力学最小势能原理
The Application of LAC Principle to the Determination of the Orders of a Colored Process
最小自相关原理在有色过程定阶中的应用
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号