The received laser-pulse series are used for constructing first order difference autocorrelation matrix and second order difference autocorrelation matrix.
在分析了激光脉冲编码方式的基础上,提出基于自相关矩阵统计的激光脉冲编码识别方法:利用接收到的脉冲序列,构造一阶差分自相关矩阵和二阶差分自相关矩阵,分别对其进行直方图统计,根据直方图特点识别激光脉冲序列的编码方式,并解算出脉冲时间参数。
A correlation matrix-based enhancement filter for detecting pulmonary nodules;
一种基于相关矩阵的肺结节增强算法
The concepts of optimizability and correlation matrix for the vulcanizate properties were first suggested through the single response optimization by CAD, which could describe the correlations among the vulcanizate properties, and the characteristics of the formulation system.
通过计算机辅助设计,分析了硫化胶各项性能单目标优化时其他性能优化的程度,并提出了优化度和相关矩阵概念。
Process models of product design were established according to correlation matrix.
定义知识单元的基因编码,引入产品功能结构相关矩阵、知识结构相关矩阵,根据相关矩阵建立产品设计多目标过程模型。
A product configuration matching degree model based on correlative matrix,modular coding and matching degree was introduced.
针对大规模定制生产模式下的产品配置问题,分析了大规模定制下的产品配置过程,应用相关矩阵、模块化编码和匹配度对产品配置进行研究的方法,提出了一种可用于大规模定制下产品模块间配置的匹配度模型。
First, the repeating patterns are formal described and then the repeating patterns of Web information are extracted and the correlative matrix is built.
该方法在形式化描述重复模式的基础上,抽取Web信息中的重复模式建立表达Web信息语义特征的相关矩阵,并通过γ相似匹配算法计算重复模式的权重继而进行Web信息分类。
The paper constructed the smallest attribute reduction heuristic algorithm using the relation matrix of rough set and greedy strategy.
利用粗糙集相关矩阵采用贪婪策略构造了寻找最小属性约简的启发式算法,证明了算法的正确性并作了复杂性分析,通过实例和与基于属性频率重要性算法进行的对比分析,发现该文算法能快速逼近最小约简,且获得的知识容易理解。
The attribute reduction in rough set is simplified the problem of the minimal covering set by constructing the relation matrix of the knowledge system.
在对属性约简算法充分研究的基础上提出一种基于最小覆盖集的粗糙集属性约简算法,即通过构造知识系统的一种改进的相关矩阵将属性约简简化为最小覆盖问题。
This paper proposes a multi-objective product configuration model based on the relation matrix,an improved Analytic Hierarchy Process(AHP) is adopted to determine the weights of sub-objective functions,and an algorithm based on ant colony algorithm for Product Configuration is provided to resolve product configuration effectively.
为了更有效地解决产品配置优化问题,建立了基于相关矩阵的多目标产品优化配置模型,运用了改进的层次分析法计算各目标权重,提出了一种基于蚁群算法的产品配置求解方法,并在C#环境下进行了仿真实验,利用多次实验优化了算法参数。
A Method for Decoding Laser-Pulse Series Based on Autocorrelation Matrix Statistic
基于差分自相关矩阵的激光脉冲编码识别
Algorithm of Equal Line Sum Decomposition for Sample Correlation Coefficient Matrix
样本相关系数矩阵的等行和分解算法
On the Similarity of Two Special Block Matrices Over a Ring
关于环上两个特殊分块矩阵的相似性
Delay-dependent Robust Stability and Stabilization Based on Free-weighting Matrices;
基于自由权矩阵的时滞相关鲁棒稳定与镇定
Improvement on the Algorithm of Equal Line Sum Decomposition for Sample Correlation Coefficient Matrix
关于样本相关系数矩阵等行和分解算法的改进
Cluster Analysis Based on Correlation Matrices and Mixed Exponential Distribution;
基于相关矩阵和混合指数分布的聚类分析
On the Condition of Reversible Matrices and the Similitude Transformation Matrix
关于矩阵相似的条件及其相似变换矩阵
Self-calibration with sensor gain and phase uncertainty based on sparsely decomposition
基于稀疏分解的阵列幅相误差自校正
On the Similarity of Two Special Block Matrices Over a Bezout Domain;
关于Bezout整环上两个特殊分块矩阵的相似性
Some Properties of Golden Section Series and Concomitance Matrix;
关于黄金分割序列及其相伴矩阵的几个性质
Block structure of correlated matrices for OFDM system and its sychronization algorithm
OFDM系统相关矩阵的分块结构及同步算法
Theory Discussion about a Class of Block Weak Similarity Matrix Properties
关于一类分块矩阵弱相似性质的理论探讨
Influence of Joint Block-Diagonalization of Spatio-Temporal Correlation Matrix on Spectral Resolution
时空相关矩阵联合对角化对谱分辨的影响
Darboux Transformation of Two Differential-difference Equations Associated with a Discrete 3×3 Matrix Spectral Problem;
与离散的3×3矩阵谱问题相联系的两个微分差分方程的达布变换
Research on Diagonally Dominant Matrix、Block Diagonally Dominant Matrix and the Relevant Special Matrices;
对角占优矩阵、块对角占优矩阵及其相关特殊矩阵类的一些研究
Rectangle Description of Concept and the Rectangle Proof of Correlative Propositions
概念的矩阵化描述及相关定理的矩阵化证明
On the Expression of the Block Matrix of the Sum and Product Sequence of Matrix;
关于矩阵的和与乘积秩的分块矩阵表示
Two Solutions on the Decomposition Matrix and Cartan Matrix of Group′s Representation
关于群表示的分解矩阵和Cartan矩阵的两个结论
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号