Firstly,screen the descriptors using support vector machine regression(SVR) by leave-one-out method based on the minimum mean square error(MSE),get the optimal kernel and the corresponding retained descriptors.
首先以均方误差(MSE)最小为原则,以留一法通过多轮末尾淘汰实施分子结构描述符的非线性SVR汰选并给出最优核函数和相应保留描述符;其次基于待测样本与训练样本保留描述符向量的欧氏距离,以不同k-近邻群子模型双重留一法预测值反映样本集的异质性;然后基于MSE最小,以留一法通过多轮末尾淘汰实施近邻群子模型的非线性SVR汰选并给出最优核函数和相应保留子模型;最后基于保留子模型以双重留一法实施组合预测。
For the generalized linear model with aggregated data:Y=Xβ+u,Eu=0,Var(u)=σ2∑,this paper is built two kinds of biased estimators: ridge estimator β(k)and improved ridge estimator β(k)which are discussed some superiority to the estimators in the sense of mean square error.
在均方误差意义下,研究了它们的优良性,并将岭估计与改进岭估计进行了比较,推广了有关文献中的结果。
As to seemingly unrelated regression system,a new biased contracting estimator of the parameters is put forward,which is the combination of generalized ridge covariance-improved estimator and Stein estimator,and the good features of this estimator in mean square error is discussed.
对于一类相依回归系统,结合广义岭型协方差改进估计与Ste in估计,提出了一种新的有偏压缩估计,,并讨论了该估计在均方误差下的优良性质。
A Motion Estimation Algorithm Based on the Quantized DCT Coefficients MSE Criterion;
基于量化系数均方误差准则的运动估计算法
For a class of seemingly unrelated regression system consisting of two equations,an improved estimation of principal components is proposed and the optimal properties are discussed in the sense of mean squared error(MSE).
针对两个相依方程组成的一类回归模型,提出回归系数的一种组合主成分改进估计方法,在均方误差意义下讨论了这种估计量的优良性质,研究了此估计与主成份改进估计的关系。
Under the MSE criterion,some properties of the improved c-k estimators are given.
针对设计矩阵Xi呈病态时的半相依线性回归系统,提出了系统参数iβ的一种c-k型改进估计,并证明了这种估计在均方误差意义下的若干优良性质。
Computer simulations show that the proposed algorithms lead to faster convergence rates and lower steady-state Mean Square Error(MSE) after convergence compared with the concurrent CMA and SDD algorithm.
从仿真结果看,两种新算法的收敛性能和稳态均方误差较CMA+SDD有了进一步提高,其中,MMA+SDD收敛性能最佳,SMMA+SDD的计算复杂度最低。
A fast encoding algorithm based on the Mean Square Error(MSE) distortion for vector quantization is introduced.
研究了一种基于均方误差(MSE)测度的矢量量化快速编码算法。
A fast encoding algorithm based on the mean square error(MSE) distance for vector quantization is introduced.
研究了一种基于均方误差(MSE)测度的矢量量化快速编码算法,算法利用小波变换的特点合理地构造矢量。
When the receiver detects the maximum frequency of Doppler-spread, the frequency of BEM is modified by a factor of 1/K, and improved mean-square error of channel can be obtained.
当接收机能够获得最大多普勒频率值时(可以通过自身运动速度等计算或者作相应估计),通过相应调整BEM基频率为原来的1/K倍,信道估计的均方误差性能得到明显改善。
Firstly, the comparisons between the two most important biased estimators, ordinary ridge estimator and principal components estimator, and LS estimator are conducted by using the criterion of mean squared error; and the conditions to show the superiority of each of these two estimators over the LS estimator have been obtained.
首先在均方误差准则下对目前应用最广泛的2种有偏估计———岭估计和主成分估计与LS估计进行了比较研究,得到了岭估计、主成分估计优于LS估计的条件;然后运用统计方法对这些条件的成立进行了假设检验;最后通过数值实验说明,在一定显著性水平下当原假设被接受时,说明没有理由不相信采用有偏估计来代替LS估计的合理性,可认为采用有偏估计将对LS估计做出比较有效的改进,当原假设被拒绝时,说明对采用有偏估计的优越性产生了怀疑,此时建议仍采用LS估计。
Its properties in the mean squared error and under the Pitman s measure of closeness are investigated.
详细讨论了岭—压缩组合估计在均方误差意义下和 Pitm an准则下及其数值稳定性方面的优良性质 ,研究了岭—压缩组合估计与岭估计、Stein均匀压缩估计在均方误差意义下进行比较的有关问题 ,讨论了岭—压缩组合估计中偏参数的选取。
Its good properties in the mean squared error and under the Pitman s measure of closeness are discussed.
在分析岭估计缺陷的基础上,运用主成分估计方法,提出了测量平差Gauss-Markov模型参数的一个新的有偏估计,称为岭-主成分组合估计,在均方误差意义下讨论了岭-主成分组合估计的优良性质及其岭-主成分组合估计与岭估计、主成分估计的比较问题,讨论了岭-主成分组合估计中偏参数的选取问题,得到了许多重要结论。
Interval Estimation of Mean Square Error for Linerar Statistic Model;
统计模型中误差方差的均方误差的区间估计
The method focuses on minimizing the ensemble mean square error of the estimation.
该方法可以估计的总体均方误差最小。
linear-minimum-mean-square-error estimator
线性最小均方误差估计量
Mean Squared Error Matrix of Two-Stage Estimete in Fay-Herriot Model
Fay-Herriot模型中两步估计的均方误差矩阵
Channel equalization of orthogonal frequency division multi-plexing underwater communication based on linear minimum mean square error
OFDM水声通信线性最小均方误差算法信道均衡
Ensemble particle swarm algorithm based on mean squared error for adaptive equalization
基于均方误差的集粒子云自适应均衡算法(英文)
Simulation of the constant modulus blind equilibrium algorithm with variable step-size based on the mean square error
基于均方误差的变步长恒模盲均衡算法仿真
Optimal Reinsurance under Standard Deviation Calculation Principle and Mean Square Error Risk Measure
标准差保费原理均方误差风险下的最优再保险
DOA Passive Location Algorithm on Least Mean Square Error Criterion
一种基于最小均方误差准则的唯方位定位方法
Mean Square Error Approximation for Wavelet-Based Semiregular Mesh Compression;
基于小波半规则网格压缩均方误差的近似方法
Robust Adaptive Beamforming Based On Minimizing Mean-Square Error
基于最小化均方误差的鲁棒自适应波束形成
Unbiased Estimation and Biased Estimation in the Sense of the Mean Square Error
均方误差意义下的无偏估计与有偏估计
Image denoising of coal dust based on improved minimum mean square error estimation
改进最小均方误差估计的煤尘图像去噪
Kalman Filter Applied Algorithm Based on Mean Square Error Minimum
基于均方误差最小的卡尔曼滤波实用算法
Implementation of Adaptive Filter on GPS Receiver Based on LMS Algorithm
基于最小均方误差算法消除GPS接收机噪声
Linear precoding based on MMSE in multi-user MIMO downlink
基于最小均方误差的多用户MIMO下行预编码
Bias of the Estimator Double Sampling for Multiple Linear Regression and Estimate of Mean Square Errors of this Estimator;
双重多元线性回归估计量的偏差和均方误差的估计量
Abstract: We present a method of circular arc fragmented curve-fittingbased on least mean-square error rule in this paper.
文摘:提出了一种基于最小均方误差准则的圆弧分段曲线拟合方法。
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号