It is proved that Poisson-stable points are dense in the locally compact phase space X if and only if non-wandering points are dense in the X.
证明了如果相空间X局部紧,则Poisson稳定点在X中稠与非游荡点在X中稠等价。
By introducing the general notion of nonwandering operator semigroup T(t) and utilizing a basic result in normed linear space,the nonwandering property of T(t)=e~(tA) is investigated with the constructive method.
通过给出一般算子半群T(t)的非游荡性概念,利用赋范空间的一个基本结果和直接的构造法证明了具有变系数的线性发展方程的强连续解半群T(t)=etA在适当的条件下是非游荡的;另外,通过对C-半群T(t)概念的引进,定义了一个无界算子半群etA,进一步证明了这二者关于非游荡性的联系;最后给出了一个无界算子半群etP(B)关于非游荡性理论的刻画,其中P(B)是微分多项式。
Some results of the limit functions of the iteration of Newton s method in the wandering domains are obtained.
该文对牛顿方法及其推广形式在游荡域的极限函数进行了探讨,并研究了二阶微分方程解的牛顿方法F atou集的分支中S iege l盘或H erm an环的存在性。
It is proved that the set M_1 of all nonwandering points in the phase space X can be represented by [∪x∈Xω(x)] if the latter attracts each point of X.
证明了相空间X中全体非游荡点的集合M1可表示为[∪x∈Xω(x)],如果后者吸引X中的每一点。
(2) Let T-O=∪n 0j=1I j, then for any j 0∈{1,2,…,n}, every connected component C of (T- P(f) )∩I j 0 has at most one nonwandering point with infinte orbit.
研究树 T上连续自映射的非游荡点集的性
(2) Each isolated periodic point of f is an isolated nonwandering point of f.
给出了圆周S1上连续自映射f,P(f)≠的如下结果:(1)如果x∈W(f)-P(f),则x的轨道是无限集;(2)f的每个孤立的周期点都是f的孤立非游荡点;(3)f非游荡点集的每个聚点都是f的周期点集的二阶聚点;(4)f的ω极限点集的导集等于f周期点集的导集;f的非游荡点集的二阶导集,等于f的周期点集的二阶导集。
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号