As a consequence of the above result,we have that implicative semilattices form an algebraic variety.
作为一个推论给出:蕴涵半格构成一个代[代数]簇。
,x n], P=Q the root ideal of Q and J the subset of ring assume Q∩J≠ , then the algebraic varieties of idea quotient V(Q∶J)= .
设Q是多项式环k[x1 ,x2 ,… ,xn]中的P 准素理想 ,P =Q是理想Q的根理想 ,J是k[x1 ,x2 ,… ,xn]的子集 ,若Q∩J≠ ,则Q对J的商理想Q∶J的代[代数]簇V(Q∶J) = ;若Q∩J = ,则Q∶J的代[代数]簇V(Q∶J) =V(Q∶J) ;若P∩J= ,则V(Q∶J) =V(Q) 。
In this paper by applying some equivalent formulas in first-order logic,this problem is transformed into one which checks whether another quasi-algebraic variety is empty.
判定拟代[代数]簇的包含关系问题不能由计算其相应的饱和理想来确定 。
Let X be a n dimensional projective variety,x be a fixed point in X,and let C_t(X,_X(1)) be the set of rational curves C of degree t passing through x in X,p_t(X)=dimC_t(X,_X(1)) for any positive integer.
设X是n维射影代[代数]簇,取定X中一点x,设Ct(X,X(1))表示X中的过x点的t次有理曲线的集合,pt(X)=d imCt(X,X(1))。
Some Researches on Approximate Implicitization and Piecewise Algebraic Varieties;
近似隐式化和分片代[代数]簇某些问题的研究
Some Researches on Multivariate Splines and Computation of Piecewise Algebraic Varieties;
多元样条与分片代[代数]簇计算的若干研究
A Theorem on the Adjoint System for Higher-Dimensional Algebraic Varieties with Ample Vector Bundles;
一个高维代[代数]簇上具有丰富向量丛的伴随系定理
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号