This paper discusses classical model,formula of total probability,normal distribution,mathematic expectation and the central limit theorem.
围绕古典概型,全概率公式,正态分布,数[数学]期望,极限定理等有关知识,探讨概率统计知识在实际生活中的广泛应用,进一步揭示概率统计与实际生活的密切联系,为应用概率知识解决实际问题,建立数学模型,奠定了一定的理论基础。
The thesis sets up the ready-made flour-product sale profit model by putting forward the conditions on which the maximum mathematic expectation of profit is based.
讨论面点销售利润的模型,提出了获利数[数学]期望最大值的条件,并在此基础上进一步讨论了损失费用的最小值,为销售商的营销策略提供一定的借鉴。
This article is mainly on the basis of the binomial distribution,the multinomial distribution,in the negative binomial distribution foundation to promote the negative binomial distribution fatherly,to give the negative term distributed definition,to infer its probability distribution and to calculate its mathematic expectation and the variance.
本文主要是在二项分布,多项分布,负二项分布的基础上,把负二项分布进一步推广,给出负N项分布的定义,推导出它的概率分布,并计算出其数[数学]期望和方差。
A calculation for random variable mathematical expectation;
一个随机变量数[数学]期望的计算
Some calculating methods for mathematical expectation are discussed by making use of the definition,nature and formula of mathematical expectation,the symmetry of random variable distribution,generating function and characteristic function.
利用数[数学]期望的定义、性质、公式、随机变量分布的对称性,以及母函数、特征函数等,探讨了数[数学]期望的几种计算方法。
In this paper,we give a quantitative representation of the ability of knowledge′s classification,and provide a novel representation of knowledge,that is,it can be expressed by expectation.
本文对知识的分类能力给予了量化,提出了一种新的知识表示方法,称为数[数学]期望表示法,我们利用数[数学]期望来定量地表示知识的分类能力。
The formula of expectation of symmetric distribution is proved,some examples are give
若分布列或密度函数具有对称快,则随机变量的期望将变得很简单,本文证明了对称分布的数[数学]期望的计算公式,并给出一些例子。
Based on random variable expectation and variance, some inequalities are proved.
基于随机变量的数[数学]期望与方差 ,讨论随机变量数字特征的几个不等式 。
This paper introduced the appliance of probability and statistics in reality,including classical model,formula of total probability, normal distribute,mathematics expectation and the central limit theorem.
本文介绍了概率统计的某些知识在实际问题中的应用,主要围绕古典概型,全概率公式,正态分布,数[数学]期望,极限定理等有关知识,探讨概率统计知识在实际生活中的广泛应用,进一步揭示概率统计与实际生活的密切联系,为应用概率知识解决实际问题,数学模型的建立,学科知识的迁移奠定一定的理论基础。
Based upon related theories and his own teaching experience, the authors of this paper give several methods about the calculation of discrete random variable mathematics expectation.
从实践的角度,给出了计算离散随机变量数[数学]期望的几种方法。
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号