Jordan algebraic technique provides a useful tool for describing and analyzing symmetric cone optimization problem,and the Jordan frame plays an important role in Euclidean Jordan algebras.
若当代数技术是描述和分析对称锥优化的一个有效工具,若当基底的欧几里德若当代数中具有重要的作用。
More recently,with the help of Euclidean Jordan algebraic technique,one has obtained a lots of interesting results in the field of SCCP.
对称锥互补问题是一类均衡优化,包括标准互补问题、二阶锥互补问题和半定互补问题等,近几年,人们借助欧几里德若当代数技术,在对称锥互补问题的研究方面获得了突破性进展并使之逐渐受到重视,本文主要从理论和算法两方面总结和评述这些新成果,同时,列出了相应的重要文献。
In this paper,we study the scalarization over Euclidean Jordan algebra vector optimization problem.
本文主要研究欧几里德若当代数向量优化的谱标量化。
In this paper, we first give the Maschke’s theorem of smash product A#H * about semisimple algebra, after studing smash product # (H,A) definited by Y.
Doi 所定义的Smash 积# ( H, A) ,给出了Smash 积A# H* 关于半单代数的Maschke 定理;给出了可分代数与余可分余代数之间的对偶关系。
In this note, we give necessary and sufficient conditions under which there is a unique Jordan frame in a Euclidean Jordan algebra.
本文主要给出了欧几里德若当代数基底唯一性的充要条件。
The Comparison between Euclid s Mathematics Thoughts and Archimedes s;
欧几里得与阿基米德数学思想之比较
The main result is:if such a group contains the orientation-preserving Euclidean group in R~2,then it is a subgroup of the orientation-preserving Euclidean goup in R~3.
主要结果是:若这种群包含二维保向欧几里德群,则必为三维保向欧几里德群的子群.
Modified Euclidean algorithm in digital TV decoding circuit
数字电视译码电路中改进型欧几里德算法
Euclid was not always right.
欧几里德不一定全对。
The non-Euclidena geometries were in effect subordinated to Euclidean geometry.
非欧几里德几何实际上是从属于欧几里德几何的。
But none of the mathematicians believed that these basic non-Euclidean geometries would be physically significant.
但数学家们无人相信这些基本的非欧几里德几何必然有物理意义。
Movement Axiom of Euclid Geometric System and High School Maths Education
欧几里德几何体系中运动与中学教学
Euclid requires no prior study of mathematics.
阅读欧几里得几何学无须先学习数学,
Some of these are mistakes made by Euclid that can be remedied.
有些错误是欧几里德搞错的,可以纠正。
A Note on the Complexity of Euclidean Algorithm
关于欧几里德算法复杂性的一点注记
He did not grant independent existence to the non-Euclidean geometries.
他不承认非欧几里德几何的独立存在性。
The common conclusion was the uniqueness and necessity of Euclidean geometry.
欧几里德几何的唯一性与必要性已被公认。
The Independence of Several Axioms in Euclidean System
欧几里德公理系统中几个公理的独立性
Some Enlightenment for Modern Education from Chinese Ancient Moral Education
中国古代德育思想对当代德育的若干启示
The logical basis for the theory of the integers that Euclid presented in Books VII to IX of the "Elements" was woefully deficient.
欧几里德在《原本》的第七到第九册中提出的整数理论的逻辑基础是十分令人遗憾地有缺陷的。
flousiana? by adopting the Euclidean nearness method of fuzzy mathematical theory.
并采用模糊数学理论中的欧几里德贴近度法全面评价秃杉的制浆造纸适应性能。
The axioms adopted by Euelid mere supposed to be self-evident truths.
欧几里德用的公理都应看作是不证自明的真理。
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号