Lounesto has given a method for constructing primitive idempotents in real Clifford algebras but that this does not yield all such idempotents associated with a given Clifford algebra.
Lounesto曾给出一个构造实Clifford代数的本原幂等元的方法,但其方法不能给出给定的实Clifford代数的所有本原幂等元。
Then the E-quasi-closed regular semigroup with a primitive idempotent is discused.
引进了“E-拟闭半群”的概念,给出了E-拟闭半群的若干特征性质,讨论了带本原幂等元的E-拟闭正则半群。
Letθbe a nontrivial eigenvalue ofΓ, and E = |X|~((-1))(?) which is primitive idempotent with respect toθ.
令θ是Γ的非平凡特征值,(?)是关于θ的本原幂等元,则下面(1)-(3)等价:(1)θ=-(?)。
Speciality of idempotent element on finite semigroups;
有限半群周期元和幂等元的特征
The properties of idempotents that have not zero column in Sn;
S_n中不含零列的幂等元的性质
A subsemigroup generated by the idempotents of T_E(X) ZOU Ding-yu,PEI Hui-sheng,WANG Shi-fei;
T_E(X)的由幂等元生成的子半群
Idempotents and primitive idempotents have very important station in the ring.
幂等元与本原幂等元在环中有非常重要的地位与作用。
In the case of(Char(F_q),|G|)=1, we provide a method that writing down directly all the primitive idempotents of related polynomial ring,and hence that of all the minimum cyclic codes.
当有限域的特征不整除群的阶时,给出了直接写出相应的多项式环的本原幂等元的方法,从而可以直接写出所有的极小循环码。
The idempotent elements in the sandwich semigroup of generalized circulant Boolean matrices;
广义循环布尔矩阵三明治半群中的幂等元
A ring R is called a normal ring if every idempotent element of R is a centre element.
环R称为正规环,如果R的每个幂等元均是中心元。
Then we discuss the structure and the number of idempotent elements, nilpotent elements, unit element, invertible elements, zero divisors and ideals in the pq - order ring.
本文讨论了一类特殊的环-pq阶环的性质和构造,并讨论了其幂等元、幂零元、单位元、可逆元、零因子、理想的结构和数量。
The Rings which Idempotents Lift Strongly Module J(R)
一类幂等元模J(R)可强提升的环
A Type of Idempotent-separating Extensions of Inverse Semigroups
一种逆半群幂等元分离扩张(英文)
IDEMPTENTS OF ENVELOPING SEMIGROUP IN A KIND OF SUBSTITUTION MINIMAL SYSTEM
一类代换极小系统中包络半群的幂等元
CONGRUENCES ON INVERSE SEMIGROUP THE CLOSURE OF WHOSE SET OF IDEMPOTENTS IS A CLIFFORD SEMIGROUP
一类幂等元集闭包是Clifford半群的逆半群上的同余
And element X=A is nilpotent.
元素X=A是幂零的。
proper nilpotent element
真幂零元素,根元素
An algebraic quantity that when raised to a certain power equals zero.
幂零一个代数值,其若干次幂等于零
the second, third, fourth, etc power of x x
的二次、 三次、 四次等幂
equal to zero when raised to a certain power.
其若干次幂等于零的。
On Idempotent-Hermite Matrices;
关于幂等Hermite矩阵的研究
Idempotent Fuzzy Semi-groups and Quasi-fuzzy Factor Groups;
幂等Fuzzy半群与拟Fuzzy商群
Purely Idempotent Latin Squares and Purely Symmetric Idempotent Latin Squares;
纯的幂等拉丁方和纯的对称幂等拉丁方
Some results on idempotency and tripotency of linear combinations of matrices
矩阵线性组合幂等性及立方幂等性的一些结论
Tripotency of Linear Combinations of Tripotent Matrices
三次幂等矩阵的线性组合的三次幂等性
On Characteristics of(m,l)Rank-idempotent Matrix and(m,l)Idempotent Matrix
(m,/)秩幂等矩阵和(m,/)幂等矩阵的特性研究
the second,third,fourth,etc power of x(x2,x3,x4,etc)
x的二次、三次、四次等幂(x2,x3,x4等)
We see that the element is collecting together powers of "入".
我们看到这个元素是合并‘入’的同次幂。
Power Integral Bases of Cyclotomic Field Q(ζ_(20));
分圆域Q(ζ_(20))的幂元整基
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号