High order accurate weighted essentially non-oscillatory(WENO) schemes are investigated and their applications of scalar conservation laws are discussed.
研究高阶精度加权本质无振荡(WENO)格式及其在标量守恒律方程中的应用。
We concentrate our discussion on the essentially non-oscillatory(ENO),weighted ENO(WENO) finite difference,finite volume schemes and discontinuous Galerkin(DG) finite element methods.
重点讨论本质无振荡(ENO)、加权本质无振荡(WENO)有限差分与有限体积格式、间断Galerkin有限元(DG)方法,描述它们各自的特点、长处与不足,简要回顾这些方法的发展和应用,重点介绍它们近五年来的最新进展。