In this paper, we discuss some nonexistences related to p-sub-Laplacian inequalities on the Heisenberg group and p-degenerate sub-elliptic inequalities constructed by generalized Baouendi-Grushin vector fields.
本文研究了Heisenberg群上相应于p-sub-Laplace算子△_(H,p)的不等方程和由广义Baouendi-Grushin向量场构成的退化椭圆L_(p,α)不等方程非平凡弱解的不存在性。
Variational Inequality Model of the American Capped Call Option;
美式封顶看涨期权的变分不等方程模型
Based on the variational inequality theory of hydrodynamic lubrication,this paper presents a fast method to calculate the oil-film forces of journal bearings with the Reynolds boundary condition.
基于流体润滑的变分不等方程理论,提出加权有限元方法求滑动轴承非线性油膜力。
Based on the theory of variational inequality, the solution of the oil film force and the corresponding Jacobian matrices in the journal bearing is transformed to solve a set of linear algebraic equations with tri diagonal coefficient matrices, which are rapidly solved with an amendatory direct method synchronously.
基于变分不等方程理论,把滑动轴承油膜力及其Jacobi矩阵的求解转换为求解一组三对角矩阵代数方程,采用一种修正的追赶法同步快速求解。
According to the regular form of the tiles of journal bearings this paper presents a direct solution method for the finite element variational inequalities arising from fluid lubrications.
针对滑动轴承轴瓦形状比较规则的特点,本文提出一种求解流体润滑有限元变分不等方程的直接解法,无需迭代便可求得节点压力及油膜破裂边界,从而大大节省了计算时间。
In this paper,the anthor uses the theory of variational inequalities to deal with Krasnososel- skii theorem for some noncompact operators.
本文利用变分不等方程理瓿证明了对于某些非紧性算子,Krasnoselskii 定理仍成立或具有类似的结论。
Based on the incrementary theory,variational inequality equation (VIE) and the corre-sponding linear complementary equation (LCE) are derived for the physically nonlinear prob-lem of space grid structure.
本文从增量理论出发,推导了空间网架结构物理非线性问题的变分不等方程和相应的线性互补方程,编制了相应的计算机程序。
This paper presents a condensed method for linear complementary equations of elasto-plastic problems derived from the variational inequations.
本文提出了将由变分不等方程导出的弹塑性问题的线性互补方程采用凝缩求解的方法,在避免了迭代计算所节省的时间之外又进一步大大节省了计算时间,极大地提高了对大型结构进行弹塑性分析的效率。
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号