The existence of particular solutions for a class of Riccati equations is studied by means of variation of constants and initial integral methods.
利用常数变易法以及初等积分法研究了一类Riccati方程的特解存在性,结果推广了以前所知结果。
In this paper,using total differentiation method and variation of constants,we give general solution formula of Bernoulli equation with different methods.
本文使用全微分法和常数变易法,从不同角度给出伯努利方程通解的公式。
In addition to the routine in which we can use variable shift to change Bernoulli equations into linear equations for solutions,we can also directly use constant variation for solutions,then find out some solutions of the one-step nonlinear differential equations.
研究了伯努利(Bernoulli)方程的解法,除了常规的利用变量变换将伯努利方程化为线性方程来求解外,还可以直接采用常数变易法来求解,进而探讨了一些一阶非线性微分方程的解法。
This paper begins with the equation of the structural characteristics,gives the mathematical principles of the constant variation of its general solution and simplifies the method of integrating factor.
从一阶线性微分方程结构特点入手,给出了求其通解的常数变易法的数学原理,并简化了积分因子法。
Demonstrated in this paper is how the Constant-transform method,the typical method for solving differential equations of order one,is used in solving linear differential equations of order four.
利用常数变易法求解具有实特征根的四阶常系数非齐次线性微分方程,在无需求其特解及基本解组的情况下给出其通解公式,并举例验证公式的适用性。
Demonstrated in this paper is how the Constant-transform method, the typical method for solving differential equations of order one, is used in solving linear differential equations of order three.
用解一阶微分方程的常数变易法求解三阶常系数非齐次线性微分方程y′′′+py′′+qy′+sy=f(x),其优点是无需求特解,无须求基本解组,但可求通解,并且给出了一个通用的公式。
In this paper,the methods of variation of parameters for salving the Vacco dynamical equations are given.
:给出解Vacco动力学方程的常数变易法 。
In this paper,the methods of variation of parameters for salving the Raitzin s canonical equations of nonholoromic nonconservative mechanical systems are given.
给出求解非完整非保守力学系统Raitzin 正则方程的常数变易法。
By example of application of Maple software to the teaching method of variation of constant,describes feasibility,purpose and advantage of application of Maple in the teaching of ordinary differential equations.
通过Maple用于常数变易法的教学实例,阐述了Maple应用于常微分方程教学的可行性、目的和优点。
Lagrange's method of variation of constants
拉格朗日常数变易法
Variation Constant for Particular Solution of Second Order Linear Differential Equation with Constant Coefficients
常数变易法求二阶常系数线性微分方程的特解
A Method of Constant Variation for solving Two Kinds of Nonlinear Differential Equation
解两类非线性微分方程的常数变易法
Applications of Variation Constant in Solving Differential Equations;
常数变易法在求解微分方程中的应用
The method of variation of parameters for salving the Vacco dynamical equations;
解Vacco动力学方程的常数变易法
On Solving Linear Differential Equations of Order Three with Constant-transform Method;
常数变易法求解三阶常系数非齐次线性微分方程
The Method of Quadratic Constant Variation for Solving Several Kinds of Nonlinear Differential Equations;
用二次常数变易法解几类非线性微分方程
The Coefficient Variation of Non-homogeneous Linear High-order Differential Equation;
高阶非齐次线性微分方程的常数变易法
THE METHOD OF VARIATION OF PARAMETERS FOR SALVING THE RAITZIN’S CANONICAL EQUATIONS OF NONHOLONOMIC NONCONSERVATIVE MECHANICAL SYSTEMS;
求解非完整非保守力学系统Raitzin正则方程的常数变易法
From One Special Solution of Homogeneous Linear Differential Equation to the General Solution of Non-homogeneous Linear Differential Equation;
从齐次方程的一个特解到非齐次方程的通解——二阶线性微分方程的又一种常数变易法
Computation Invariable Coefficient the Number of Times is Different Linear Recursion Sequence Special Solution Simple Method;
常系数非齐次线性递归数列求特解的简易方法
Investigation of methods for measuring the constants d_(iu) of piezoelectric material
压电应变常数d_(iu)的测量方法研究
Simulation of Variable Step-size Signed-Regressor Constant Modulus Algorithms
时变步长符号递归常数模算法及仿真
New Methods on the Determination of Martensitic Transformation Shear Angle and Lattice Parameters;
马氏体相变切变角和点阵常数测定的新方法
Invariant and solution of nth-order Ordinary Differential Equation with Variable Coefficient;
n阶变系数常微分方程的不变式及其求法
An instance of being eccentrically variable or fickle.
变换无常反复无常或易变的情况
Certain granular solids transform into highly mobile slurries.
一定数量的粒状固体就可以变成非常易流动的泥浆。
The math exam was a clay pigeon.
数学考试非常容易。
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号